相关习题
 0  259204  259212  259218  259222  259228  259230  259234  259240  259242  259248  259254  259258  259260  259264  259270  259272  259278  259282  259284  259288  259290  259294  259296  259298  259299  259300  259302  259303  259304  259306  259308  259312  259314  259318  259320  259324  259330  259332  259338  259342  259344  259348  259354  259360  259362  259368  259372  259374  259380  259384  259390  259398  266669 

科目: 来源: 题型:

【题目】对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[﹣0.25]=﹣1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+ x,求f(2 )的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)= ,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】几位同学在研究函数 时,给出了下面几个结论:

的单调减区间是,单调增区间是

②若,则一定有

③函数的值域为

④若规定,则对任意恒成立.

上述结论中正确的是____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)对任意的,恒有,求正实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数上的减函数,,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)单调递增,求实数的取值范围;

(3)当时,有最大值1,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=2 sin( + )sin( )﹣sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x= 对称.
(1)若存在x∈[0, ),使等式[g(x)]2﹣mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0, ]时不等式f(x)+ag(﹣x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求在区间上零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10 米,记∠BHE=θ.

(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.

查看答案和解析>>

同步练习册答案