科目: 来源: 题型:
【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.
(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;
(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,若抛物线的焦点与椭圆的一个焦点重合.
(1)求椭圆的标准方程;
(2)过椭圆的左焦点,且斜率为的直线交椭圆于, 两点,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0且a≠1),若h(x)=f(x)-g(x).
(1)求函数h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若f(2)=1,求使h(x)>0成立的x的集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列四个命题:
1)若α>β且α、β都是第一象限角,则tanα>tanβ;
2)“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得 <0”;
3)已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则(p)∨q为真命题;
4)函数 是偶函数.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的定义域为D,且同时满足以下条件:
①在D上是单调递增或单调递减函数;
②存在闭区间 D(其中),使得当时,的取值集合也是.那么,我们称函数 ()是闭函数.
(1)判断是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.
(2)若是闭函数,求实数的取值范围.
(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)
查看答案和解析>>
科目: 来源: 题型:
【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com