相关习题
 0  259286  259294  259300  259304  259310  259312  259316  259322  259324  259330  259336  259340  259342  259346  259352  259354  259360  259364  259366  259370  259372  259376  259378  259380  259381  259382  259384  259385  259386  259388  259390  259394  259396  259400  259402  259406  259412  259414  259420  259424  259426  259430  259436  259442  259444  259450  259454  259456  259462  259466  259472  259480  266669 

科目: 来源: 题型:

【题目】对于函数,若,则称的“不动点”;若,则称的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为,即

)设函数,求集合

)求证:

)设函数,且,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知矩形的长为2,宽为1,.边分别在.轴的正半轴上,点与坐标原点重合(如图所示)。将矩形折叠,使点落在线段上。

(1)若折痕所在直线的斜率为,试求折痕所在直线的方程;

(2)当时,求折痕长的最大值;

(3)当时,折痕为线段,设,试求的最大值。

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数a为常数

1)判断fx)在定义域内的单调性

2)若fx)在上的最小值为,求a的值

查看答案和解析>>

科目: 来源: 题型:

【题目】从某学校高三年级共名男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成八组,第一组;第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分,若第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

)估计这所学校高三年级全体男生身高以上(含)的人数.

)求第六组、第七组的频率并补充完整频率分布直方图(铅笔作图并用中性笔描黑).

)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足的事件概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】一动圆与圆外切,与圆内切.

(1)求动圆圆心的轨迹的方程.

(2)设过圆心的直线与轨迹相交于两点,为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在数列{an}中,前n项和为Sn , 且Sn= ,数列{bn}的前n项和为Tn , 且bn=
(1)求数列{an}的通项公式;
(2)是否存在m,n∈N* , 使得Tn=am , 若存在,求出所有满足题意的m,n,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】直三棱柱中,分别是 的中点,为棱上的点.

(1)证明:

(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(3, ),点B的极坐标为(6, ),曲线C:(x﹣1)2+y2=1
(1)求曲线C和直线AB的极坐标方程;
(2)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM||ON|=2,求射线l所在直线的直角坐标方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx=xR),gx=2a-1

1)求函数fx的单调区间与极值

2)若fx≥gx恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案