科目: 来源: 题型:
【题目】已知双曲线(b>a>0),O为坐标原点,离心率,点在双曲线上.
(1)求双曲线的方程;
(2)若直线与双曲线交于P、Q两点,且.求|OP|2+|OQ|2的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设a∈R,函数f(x)=x2e1﹣x﹣a(x﹣1).
(1)当a=1时,求f(x)在( ,2)内的极大值;
(2)设函数g(x)=f(x)+a(x﹣1﹣e1﹣x),当g(x)有两个极值点x1 , x2(x1<x2)时,总有x2g(x1)≤λf′(x1),求实数λ的值.(其中f′(x)是f(x)的导函数.)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)满足对任意的m,n都有f(m+n)=f(m)+f(n)-1,设g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,则g(ln)=______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
(Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若平面D1EC与平面ECD的夹角大小为45°,求点B到平面D1EC的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)的两个焦点为F1、F2 , 且椭圆E过点(0, ),( ,﹣ ),点A是椭圆上位于第一象限的一点,且△AF1F2的面积S△ = .
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P、Q,直线AP、AQ分别与x轴相交于点M、N,点C( ,0),证明:|CM||CN|为定值,并求出该定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xoy中,直线l的参数方程为 (t为参数)在极坐标系与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴中,曲线C的方程为.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:
异面直线与间的距离为定值;
三棱锥的体积为定值;
异面直线与直线所成的角为定值;
二面角的大小为定值.
其中真命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,点E、F分别是AB、CD的中点,点G在EF上,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF,如图2.
(1)当AG+GC最小时,求证:BD⊥CG;
(2)当2VB﹣ADGE=VD﹣GBCF时,求二面角D﹣BG﹣C平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com