科目: 来源: 题型:
【题目】已知函数,为的导函数,其中.
(1)当时,求函数的单调区间;
(2)若方程有三个互不相同的根0,,,其中.
①是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由.
②若对任意的,不等式恒成立,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求证:BD⊥平面ADE;
(2)求直线BE和平面CDE所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:BC⊥面CDE;
(2)在线段AE上是否存在一点R,使得面BDR⊥面DCB,若存在,求出点R的位置;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆:的离心率为,焦点到相应准线的距离为,,分别为椭圆的左顶点和下顶点,为椭圆上位于第一象限内的一点,交轴于点,交轴于点.
(1)求椭圆的标准方程;
(2)若,求的值;
(3)求证:四边形的面积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数满足.
(Ⅰ)当时,解不等式;
(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;
(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在底面为平行四边形的四棱锥中,过点的三条棱PA、AB、AD两两垂直且相等,E,F分别是AC,PB的中点.
(Ⅰ)证明:EF//平面PCD;
(Ⅱ)求EF与平面PAC所成角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正三棱柱中,底面的边长为2,侧棱长为4,是线段上一点,是线段的中点,为的中点.以为正交基底,建立如图所示的空间直角坐标系.
(1)若,求直线和平面所成角的正弦值;
(2)若二面角的正弦值为,求的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.
(1)求小张在这次活动中获得的奖金数的概率分布及数学期望;
(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司在新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则不能获得奖金.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
(Ⅲ)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com