相关习题
 0  259691  259699  259705  259709  259715  259717  259721  259727  259729  259735  259741  259745  259747  259751  259757  259759  259765  259769  259771  259775  259777  259781  259783  259785  259786  259787  259789  259790  259791  259793  259795  259799  259801  259805  259807  259811  259817  259819  259825  259829  259831  259835  259841  259847  259849  259855  259859  259861  259867  259871  259877  259885  266669 

科目: 来源: 题型:

【题目】已知下列两个命题: 函数在[2,+∞)单调递增; 关于的不等式的解集为.若为真命题, 为假命题,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知表1是某年部分日期的天安门广场升旗时刻表.

表1:某年部分日期的天安门广场升旗时刻表

将表1中的升旗时刻化为分数后作为样本数据(如:可化为).

(Ⅰ)请补充完成下面的频率分布表及频率分布直方图;

分组

频数

频率

4:00—4:59

3

5:00—5:59

0.25

6:00—6:59

7:00—7:59

5

合计

20

(Ⅱ)若甲学校从上表日期中随机选择一天观看升旗.试估计甲学校观看升旗的时刻早于6:00的概率;

(Ⅲ)若甲,乙两个学校各自从表1中五月、六月的日期中随机选择一天观看升旗, 求两校观看升旗的时刻均不早于5:00的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):

空气质量指数

(0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

空气质量等级

1级优

2级良

3级轻度污染

4级中度污染

5级重度污染

6级严重污染

该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.

(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X元,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司制造两种电子设备:影片播放器和音乐播放器.在每天生产结束后,要对产品进行检测,故障的播放器会被移除进行修复. 下表显示各播放器每天制造的平均数量以及平均故障率.

商品类型

播放器每天平均产量

播放器每天平均故障率

影片播放器

3000

4%

音乐播放器

9000

3%

下面是关于公司每天生产量的叙述:

①每天生产的播放器有三分之一是影片播放器;

②在任何一批数量为100的影片播放器中,恰好有4个会是故障的;

③如果从每天生产的音乐播放器中随机选取一个进行检测,此产品需要进行修复的概率是0.03.

上面叙述正确的是___________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线(b>0)的左、右焦点分别为,其一条渐近线方程为y=x,点P在该双曲线上,且,则=( )

A. 4 B. 4 C. 8 D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为迎接2022年北京冬季奥运会, 某校开设了冰球选修课,12名学生被分成甲、乙两组进行训练.他们的身高(单位:cm)如下图所示:

设两组队员身高平均数依次为,方差依次为,则下列关系式中完全正确的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

科目: 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线点,已知米,米.

(1)要使矩形的面积大于平方米,则的长应在什么范围内?

(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:

①每年相同的月份,入住客栈的游客人数基本相同;

②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;

③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.

(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数y与月x份之间的关系;

(2)请问哪几个月份要准备400份以上的食物?

查看答案和解析>>

同步练习册答案