相关习题
 0  259820  259828  259834  259838  259844  259846  259850  259856  259858  259864  259870  259874  259876  259880  259886  259888  259894  259898  259900  259904  259906  259910  259912  259914  259915  259916  259918  259919  259920  259922  259924  259928  259930  259934  259936  259940  259946  259948  259954  259958  259960  259964  259970  259976  259978  259984  259988  259990  259996  260000  260006  260014  266669 

科目: 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

数学成绩

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成绩

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( )

A. 95% B. 97.5% C. 99.5% D. 99.9%

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列说法:①用刻画回归效果,当越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程,变量增加1个单位时,平均增加5个单位;⑤线性回归方程必过点.其中错误的个数有( )

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,曲线在点处的切线方程为

(1)求的值;

(2)若,求函数的单调区间;

(3)设函数,且在区间内存在单调递减区间,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)若在区间内有唯一的零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战和不接受挑战是等可能的,且互不影响.

(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?

(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:

性别 成绩

接受挑战

不接受挑战

总计

男性

45

15

60

女性

25

15

40

总计

70

30

100

根据表中数据,能有有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?

附:,其中.

2.706

3.841

6.635

10.828

0.10

0.05

0.010

0.001

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程
在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为 ,直线l的极坐标方程为 ,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 ,试判断直线l与圆C的位置关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知

1)判断函数的奇偶性,并予以证明;

2时求使的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

已知,函数

(I)当为何值时, 取得最大值?证明你的结论;

(II) 上是单调函数,求的取值范围;

(III)设,当时, 恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案