科目: 来源: 题型:
【题目】某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( )
A. 95% B. 97.5% C. 99.5% D. 99.9%
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列说法:①用刻画回归效果,当越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程,变量增加1个单位时,平均增加5个单位;⑤线性回归方程必过点.其中错误的个数有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目: 来源: 题型:
【题目】过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战和不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
性别 成绩 | 接受挑战 | 不接受挑战 | 总计 |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
总计 | 70 | 30 | 100 |
根据表中数据,能有有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:,其中.
2.706 | 3.841 | 6.635 | 10.828 | |
0.10 | 0.05 | 0.010 | 0.001 |
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为 ,直线l的极坐标方程为 ,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 ,试判断直线l与圆C的位置关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)
已知,函数.
(I)当为何值时, 取得最大值?证明你的结论;
(II) 设在上是单调函数,求的取值范围;
(III)设,当时, 恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com