相关习题
 0  259882  259890  259896  259900  259906  259908  259912  259918  259920  259926  259932  259936  259938  259942  259948  259950  259956  259960  259962  259966  259968  259972  259974  259976  259977  259978  259980  259981  259982  259984  259986  259990  259992  259996  259998  260002  260008  260010  260016  260020  260022  260026  260032  260038  260040  260046  260050  260052  260058  260062  260068  260076  266669 

科目: 来源: 题型:

【题目】已知点的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,……,An是线段An-2An-1的中点,……

(1)写出xnxn-1,xn-2之间的关系式(n≥3);

(2)an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义域为的函数满足:对于任意的实数都有成立,且当时, 恒成立,且是一个给定的正整数).

1)判断函数的奇偶性,并证明你的结论;

2)判断并证明的单调性;若函数上总有成立,试确定应满足的条件;

3)当时,解关于的不等式

查看答案和解析>>

科目: 来源: 题型:

【题目】北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估,该商品原来每件售价为25元,年销售8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设集合A中任意两数之和不能被5整除,则的最大值为(

A. 17B. 18C. 15D. 16

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,C上有n个不同的点P1,P2,…,Pn,设两两连接这些点所得线段PiPj,任意三条在圆内都不共点,试证它们在圆内共≥4).

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
证明DF⊥平面ABE;

查看答案和解析>>

科目: 来源: 题型:

【题目】若关于的一元二次方程有实数根,且,则下列结论中错误的个数是( )

(1)当时,;(2);(3)当时,;(4)二次函数的图象与轴交点的坐标为(2,0)和(3,0)

A. 1B. 2C. 3D. 0

查看答案和解析>>

同步练习册答案