科目: 来源: 题型:
【题目】已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求函数f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在三角形ABC中,AB<AC,∠BAC=90°,边AB,AC的长分别为方程 的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tanθ的取值范围为( )
A.
B.
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=(m2-m-1)·是幂函数,对任意x1,x2∈(0,+∞)且x1≠x2,满足,若a,b∈R且a+b>0,ab<0,则f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 无法判断
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分14分)已知函数.
(Ⅰ)若函数在其定义域上是增函数,求实数的取值范围;
(Ⅱ)当时,求出的极值;
(Ⅲ)在(Ⅰ)的条件下,若在内恒成立,试确定的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费元不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,,,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 . (I)求曲线C2的直角坐标系方程;
(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com