相关习题
 0  259981  259989  259995  259999  260005  260007  260011  260017  260019  260025  260031  260035  260037  260041  260047  260049  260055  260059  260061  260065  260067  260071  260073  260075  260076  260077  260079  260080  260081  260083  260085  260089  260091  260095  260097  260101  260107  260109  260115  260119  260121  260125  260131  260137  260139  260145  260149  260151  260157  260161  260167  260175  266669 

科目: 来源: 题型:

【题目】解答题。
(1)已知 是奇函数,求常数m的值;
(2)画出函数y=|3x﹣1|的图象,并利用图象回答:k为何值时,方程|3x﹣1|=k无解?有一解?有两解?

查看答案和解析>>

科目: 来源: 题型:

【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若 =1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有

查看答案和解析>>

科目: 来源: 题型:

【题目】下列四个命题中正确的是______

①已知定义在R上的偶函数,则

②若函数,值域为,且存在反函数,则函数与函数是两个不同的函数﹔

③已知函数,既无最大值,也无最小值;

④函数的所有零点构成的集合共有4个子集.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 ,该函数所表示的曲线上的一个最高点为由此最高点到相邻的最低点间曲线与轴交于点.

(1)函数解析式

(2)求函数的单调区间

(3)若,求的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)是定义在(﹣44)上的奇函数,满足f2)=1,当﹣4x≤0时,有fx)=

1)求实数ab的值;

2)若fm+1+>0.求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正视图的投影面α内,且AB与投影面α所成角为θ(30°≤θ≤60°),设正视图的面积为m,侧视图的面积为n,当θ变化时,mn的最大值是(

A.2
B.4
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】若f(x)=x2+2 f(x)dx,则 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目: 来源: 题型:

【题目】某市疾控中心流感监测结果显示,自月起,该市流感活动一度出现上升趋势,尤其是月以来呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复假设某班级已知位同学中有位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染.下面是两种化验方法: 方案甲:逐个化验,直到能确定感染同学为止;

方案乙:先任取个同学,将它们的血液混在一起化验若结果呈阳性则表明感染同学为这位中的位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外位同学中逐个检测;

(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;

(2)表示依方案甲所需化验次数,表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳.

查看答案和解析>>

科目: 来源: 题型:

【题目】学校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:

期末分数段

人数

5

10

15

10

5

5

“过关”人数

1

2

9

7

3

4

(1)由以上统计数据完成如下列联表,并判断是否有的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由:

分数低于90分人数

分数不低于90分人数

合计

“过关”人数

“不过关”人数

合计

(2)在期末分数段的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为,求的分布列及数学期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

同步练习册答案