科目: 来源: 题型:
【题目】已知数列是递增数列,且对,都有,则实数的取值范围是
A. B. C. D.
【答案】D
【解析】
由{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立”转化为“λ>﹣2n﹣1对于n∈N*恒成立”求解.
∵{an}是递增数列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1对于n∈N*恒成立.
而﹣2n﹣1在n=1时取得最大值﹣3,
∴λ>﹣3,
故选:D.
【点睛】
本题主要考查由数列的单调性来构造不等式,解决恒成立问题.研究数列单调性的方法有:比较相邻两项间的关系,将an+1和an做差与0比较,即可得到数列的单调性;研究数列通项即数列表达式的单调性.
【题型】单选题
【结束】
13
【题目】已知数列{an}满足a1=1,且an=an-1+2n1 (n≥2 ),则a20=________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,进而求得q和a1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.
由题意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,则a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}为正项等比数列,
∴{bn}为等差数列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12时,(Sn)max=132.
故答案为:C.
【点睛】
这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
【题型】单选题
【结束】
12
【题目】已知数列是递增数列,且对,都有,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P= (其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+ )万元(不含促销费用),产品的销售价格定为(4+ )元/件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根据数列前n项和的定义得到的值,再由数列的前n项和的公式得到,进而求得首项,由=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,则,
根据等差数列的前n项和公式得到Sm=,得到首项为-2,故=2,解得m=5.
故答案为:A.
【点睛】
这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。
【题型】单选题
【结束】
11
【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
【答案】C
【解析】如图△ADE∽△ABC,设矩形的另一边长为y,则,所以,又,所以,即,解得.
【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于难题.
【题型】单选题
【结束】
10
【题目】设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A. 5 B. 4 C. 3 D. 6
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1, )
C.(0, )∪( ,+∞)
D.( ,1)∪(1, )
查看答案和解析>>
科目: 来源: 题型:
【题目】在数列{ }中,已知,,,则等于( )
A. B. C. D.
【答案】B
【解析】
将数列的等式关系两边取倒数是公差为的等差数列,再根据等差数列求和公式得到数列通项,再取倒数即可得到数列{}的通项.
将等式两边取倒数得到,是公差为的等差数列,=,根据等差数列的通项公式的求法得到,故=.
故答案为:B.
【点睛】
这个题目考查的是数列通项公式的求法,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;还有构造新数列的方法,取倒数,取对数的方法等等.
【题型】单选题
【结束】
9
【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
查看答案和解析>>
科目: 来源: 题型:
【题目】已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得或
∴或,∴a1+a10=a1(1+q9)=-7.选D.
点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.
【题型】单选题
【结束】
8
【题目】在数列{ }中,已知,,,则等于( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com