科目: 来源: 题型:
【题目】直线和将圆分成4部分,用5种不同颜色给四部分染色,每部分染一种颜色,相邻部分不能染同一种颜色,则不同的染色方案有
A 120种 B 240种 C 260种 D 280种
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex﹣1f(x)≥x.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列{an}与{bn}满足:①a1=a<0,b1=b>0,②当k≥2时,若ak﹣1+bk﹣1≥0,则ak=ak﹣1 , bk= ;若ak﹣1+bk﹣1<0,则ak= ,bk=bk﹣1 .
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)设Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 对任意正整数k,当2≤k≤n时,恒有bk﹣1>bk , 求n的最大值(用a,b表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知存在常数,那么函数在上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.
(1)判断函数的单调性,并证明:
(2)将前述的函数和推广为更为一般形式的函数,使和都是的特例,研究的单调性(只须归纳出结论,不必推理证明)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过两个焦点,A,B是椭圆C的长轴端点.
(1)求椭圆C的标准方程和圆O的方程;
(2)设P、Q分别是椭圆C和圆O上位于y轴两侧的动点,若直线PQ与x平行,直线AP、BP与y轴的交点即为M、N,试证明∠MQN为直角.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥S—ABCD的底面是正方形,侧棱SA⊥底面ABCD,
过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.
(1)证明E、H在以AK为直径的圆上,且当点P是SA上任一点时,试求的最小值;
(2)求平面AEKH与平面ABCD所成的锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号
码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。
(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)证明:AB1⊥BO1;
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com