相关习题
 0  260024  260032  260038  260042  260048  260050  260054  260060  260062  260068  260074  260078  260080  260084  260090  260092  260098  260102  260104  260108  260110  260114  260116  260118  260119  260120  260122  260123  260124  260126  260128  260132  260134  260138  260140  260144  260150  260152  260158  260162  260164  260168  260174  260180  260182  260188  260192  260194  260200  260204  260210  260218  266669 

科目: 来源: 题型:

【题目】直线将圆分成4部分,用5种不同颜色给四部分染色,每部分染一种颜色,相邻部分不能染同一种颜色,则不同的染色方案有

A 120 B 240 C 260 D 280

查看答案和解析>>

科目: 来源: 题型:

【题目】2006表示成5个正整数之和. 记. 问:

(1)取何值时,S取到最大值;

(2)进一步地,对任意,当取何值时,S取到最小值. 说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex1f(x)≥x.

查看答案和解析>>

科目: 来源: 题型:

【题目】数列{an}与{bn}满足:①a1=a<0,b1=b>0,②当k≥2时,若ak1+bk1≥0,则ak=ak1 , bk= ;若ak1+bk1<0,则ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)设Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 对任意正整数k,当2≤k≤n时,恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知存在常数,那么函数上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.

(1)判断函数的单调性,并证明:

(2)将前述的函数推广为更为一般形式的函数,使都是的特例,研究的单调性(只须归纳出结论,不必推理证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过两个焦点,A,B是椭圆C的长轴端点.

(1)求椭圆C的标准方程和圆O的方程;
(2)设P、Q分别是椭圆C和圆O上位于y轴两侧的动点,若直线PQ与x平行,直线AP、BP与y轴的交点即为M、N,试证明∠MQN为直角.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥S—ABCD的底面是正方形,侧棱SA⊥底面ABCD,

过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.

(1)证明E、H在以AK为直径的圆上,且当点P是SA上任一点时,试求的最小值;

(2)求平面AEKH与平面ABCD所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号

码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。

(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;

(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.

查看答案和解析>>

同步练习册答案