科目: 来源: 题型:
【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,2AE=BD=2.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.
(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;
(2)设总决赛中获得的门票总收入为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】假设关于某种设备的使用年限 (年)与所支出的维修费用 (万元)有如下统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, .
,
(1)求, ;
(2)若 与具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】经过对K2的统计量的研究,得到了若干个观测值,当K2≈6.706时,我们认为两分类变量A、B( )
A. 有67.06%的把握认为A与B有关系 B. 有99%的把握认为A与B有关系
C. 有0.010的把握认为A与B有关系 D. 没有充分理由说明A与B有关系
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,为一台冷轧机的示意图,冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.(轧钢过程中,钢带宽度不变,且不考虑损耗)
一对对轧辊的减薄率.
(1)输入钢带的厚度为,输出钢带的厚度为,若每对轧辊的减薄率不超过,问冷轧机至少需要安装几对轧辊?
(2)已知一台冷轧机共有4对减薄率为的轧辊,所有轧辊周长均为,若第对轧辊有缺陷,每滚动一周在刚带上压出一个疵点,在冷轧机输出的刚带上,疵点的间距为,易知,为了便于检修,请计算,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】一台机器在一天内发生故障的概率为p.已知这台机器在3个工作日至少一天不发生故障的概率为0.999.
(1)求p;
(2)若这台机器一周5个工作日不发生故障,可获利5万元;发生一次故障任可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元.这台机器一周内可能获利的均值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的图象上相邻两个最高点的距离为π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com