相关习题
 0  260156  260164  260170  260174  260180  260182  260186  260192  260194  260200  260206  260210  260212  260216  260222  260224  260230  260234  260236  260240  260242  260246  260248  260250  260251  260252  260254  260255  260256  260258  260260  260264  260266  260270  260272  260276  260282  260284  260290  260294  260296  260300  260306  260312  260314  260320  260324  260326  260332  260336  260342  260350  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点

)求的取值范围

)是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)

(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为 ,求该四棱锥的侧面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网”,符合“低碳出行”的理念,已越来越多地引起了人们的关注某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值百分制按照分成5组,制成如图所示频率分直方图.

求图中x的值;

求这组数据的平均数和中位数;

已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求恰有1名女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是  

A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球

C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目: 来源: 题型:

【题目】记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.(12分)
(1)求{an}的通项公式;
(2)求Sn , 并判断Sn+1 , Sn , Sn+2是否能成等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量,函数

.

(1)当时,求的值;

(2)若的最小值为,求实数的值;

(3)是否存在实数,使函数有四个不同的零点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设A,B是椭圆C: + =1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)

查看答案和解析>>

科目: 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,则C=(  )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.

评估得分

[60,70)

[70,80)

[80,90)

[90,100)

评定等级

D

C

B

A

(1)估计该商业集团各连锁店评估得分的众数和平均数;

(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.

查看答案和解析>>

同步练习册答案