科目: 来源: 题型:
【题目】如图,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,点D在线段BC上.
(1)若∠ADC= ,求AD的长;
(2)若BD=2DC,△ACD的面积为 ,求 的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点 ,且与点 最近的一个最低点是 .
(1)求函数f(x)的解析式及其单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ac,求函数f(A)的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】设命题p:函数f(x)=lg(﹣mx2+2x﹣m)的定义域为R;
命题q:函数g(x)=4lnx+ ﹣(m﹣1)x的图象上任意一点处的切线斜率恒大于2,
若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第6节的容积为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=e﹣x , ;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是 . (填上所有正确的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数f(x)同时满足以下三个性质;①f(x)的最小正周期为π;②对任意的x∈R,都有f(x﹣ )=f(﹣x);③f(x)在( , )上是减函数.则f(x)的解析式可能是( )
A.f(x)=cos(x+ )
B.f(x)=sin2x﹣cos2x
C.f(x)=sinxcosx
D.f(x)=sin2x+cos2x
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,圆的方程为.
(1)求的普通方程和的直角坐标方程;
(2)当时,与相交于,两点,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是 (t是参数)和 (φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)射线OM:θ=α与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|·|OQ|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com