相关习题
 0  260318  260326  260332  260336  260342  260344  260348  260354  260356  260362  260368  260372  260374  260378  260384  260386  260392  260396  260398  260402  260404  260408  260410  260412  260413  260414  260416  260417  260418  260420  260422  260426  260428  260432  260434  260438  260444  260446  260452  260456  260458  260462  260468  260474  260476  260482  260486  260488  260494  260498  260504  260512  266669 

科目: 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x+y的值为(

A.168
B.169
C.8
D.9

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBDAE⊥平面ABD,且AE

)求证:DE⊥AC

)求DE与平面BEC所成角的正弦值;

)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为4,椭圆 的离心率且过抛物线的焦点.

1)求抛物线和椭圆的标准方程;

(2)过点的直线交抛物线两不同点,交轴于点已知 求证: 为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)= (x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)> 恒成立,求整数k的最大值;
(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足 ,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折叠后的线段AD上是否存在一点P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(Ⅱ)求三棱锥A﹣CDF的体积的最大值,并求此时二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

同步练习册答案