相关习题
 0  260354  260362  260368  260372  260378  260380  260384  260390  260392  260398  260404  260408  260410  260414  260420  260422  260428  260432  260434  260438  260440  260444  260446  260448  260449  260450  260452  260453  260454  260456  260458  260462  260464  260468  260470  260474  260480  260482  260488  260492  260494  260498  260504  260510  260512  260518  260522  260524  260530  260534  260540  260548  266669 

科目: 来源: 题型:

【题目】如图,椭圆)和圆,已知圆将椭圆的长轴三等分,椭圆右焦点到右准线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点

(1)求椭圆的方程;

(2)若直线分别与椭圆相交于另一个交点为点.

①求证:直线经过一定点;

②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出实数的范围;若不存在,请说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数f(x)=atanx+bx3+cx(a、b、c∈R),选取a、b、c的一组值计算f(1)、f(﹣1),所得出的正确结果可能是(
A.2和1
B.2和0
C.2和﹣1
D.2和﹣2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|x﹣4|,g(x)=a|x|,a∈R.
(Ⅰ)当a=2时,解关于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)﹣4对任意x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t为参数,α∈[0,π)),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐标方程;
(Ⅱ)若曲线C1与C2交于A,B两点,且|AB|> ,求α的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=xlnx.
(Ⅰ)设函数g(x)= ,求g(x)的单调区间;
(Ⅱ)若方程f(x)=t有两个不相等的实数根x1 , x2 , 求证:x1+x2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: =1,直线l过点M(﹣1,0),与椭圆C交于A,B两点,交y轴于点N.
(1)设MN的中点恰在椭圆C上,求直线l的方程;
(2)设 ,试探究λ+μ是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,过点且互相垂直的两条直线分别与圆交于点AB,与圆交于点C,D.

(1) 若AB,求CD的长;

(2)若直线斜率为2,求的面积;

(3) 若CD的中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了更好地了解鲸的生活习性,某动物保护组织在受伤的鲸身上安装了电子监测设备,从海岸线放归点处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测。在放归点的正东方向有一观测站可以对鲸进行生活习性的详细观测。已知观测站的观测半径为.现以点为坐标原点、以由西向东的海岸线所在直线为轴建立平面直角坐标系,则可以测得鲸的行进路线近似的满足.

(1)若测得鲸的行进路线上一点的值;

(2)在(1)问的条件下,问:

当鲸运动到何处时,开始进入观测站的观测区域内?(计算结果精确到0.1)

当鲸运动到何处时,离观测站距离最近观测最便利)?(计算结果精确到0.1)

(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥BC,E是棱PC的中点,∠DAB=90°,AB∥CD,AD=CD=2AB=2.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)若二面角E﹣BD﹣P大于60°,求四棱锥P﹣ABCD体积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?

支持希拉里

支持特朗普

合计

男员工

女员工

合计

(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案