科目: 来源: 题型:
【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 , ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)若a∈(﹣∞,﹣ ],且函数g(x)=xeax﹣1﹣2ax+f(x)的最小值为M,求M的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知F1(﹣c,0)、F2(c、0)分别是椭圆G: + =1(0<b<a<3)的左、右焦点,点P(2, )是椭圆G上一点,且|PF1|﹣|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若 ⊥ ,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中点,求证:EF∥平面ABC;
(2)若AD=DE,求BE与平面ACE所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:cm)频数分布表如表1、表2. 表1:男生身高频数分布表
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生身高频数分布表
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
频数 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求该校高一女生的人数;
(2)估计该校学生身高在[165,180)的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)学生的人数,求X的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点M(x0 , 2 )(x0> )为圆心的圆与线段MF相交于点A,且被直线x= 截得的弦长为 | |,若 =2,则| |= .
查看答案和解析>>
科目: 来源: 题型:
【题目】若曲线f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是( )
A.(e,e2)
B.(e, )
C.(1,e2)
D.[1,e)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是( )
A.与平面A1DE垂直的直线必与直线BM垂直
B.异面直线BM与A1E所成角是定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值
查看答案和解析>>
科目: 来源: 题型:
【题目】将函数f(x)=cos2x图象向左平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[﹣ , ]上单调递减,且函数g(x)的最大负零点在区间(﹣ ,0)上,则φ的取值范围是( )
A.[ , ]
B.[ , )
C.( , ]
D.[ , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com