相关习题
 0  261096  261104  261110  261114  261120  261122  261126  261132  261134  261140  261146  261150  261152  261156  261162  261164  261170  261174  261176  261180  261182  261186  261188  261190  261191  261192  261194  261195  261196  261198  261200  261204  261206  261210  261212  261216  261222  261224  261230  261234  261236  261240  261246  261252  261254  261260  261264  261266  261272  261276  261282  261290  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中, .

(1)证明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知菱形的边长为2, . 是边上一点,线段于点.

(1)若的面积为,求的长;

(2)若,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线上点处的切线方程为

求抛物线的方程;

为抛物线上的两个动点,其中,线段的垂直平分线轴交于点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数满足以下两个条件:①不等式的解集是②函数上的最小值是3.

(Ⅰ)求的解析式;

(Ⅱ)若点在函数的图象上,且.

(ⅰ)求证:数列为等比数列

(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

1)若有两个零点,求的范围;

2)若有两个极值点,求的范围;

3)在(2)的条件下,若的两个极值点为 ,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,且经过点.

(1)求椭圆方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴截距的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃),对某种鸡的时段产蛋量(单位: )和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根据散点图判断, 哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

3)已知时段投入成本的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目: 来源: 题型:

【题目】已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射击一次,命中不足8环的概率;

(2)求甲射击一次,至少命中7环的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在R上的函数fx)满足:对任意都有,且当x>0时,

1)求的值,并证明为奇函数;

2)判断函数的单调性,并证明;

3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案