相关习题
 0  261267  261275  261281  261285  261291  261293  261297  261303  261305  261311  261317  261321  261323  261327  261333  261335  261341  261345  261347  261351  261353  261357  261359  261361  261362  261363  261365  261366  261367  261369  261371  261375  261377  261381  261383  261387  261393  261395  261401  261405  261407  261411  261417  261423  261425  261431  261435  261437  261443  261447  261453  261461  266669 

科目: 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20141月至201612月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在78

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是定义域为的奇函数,且当时, ,设”.

(1)若为真,求实数的取值范围;

(2)设集合与集合的交集为,若为假, 为真,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线和直线在该直角坐标系下的普通方程;

(2)动点在曲线上,动点在直线上,定点的坐标为,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数 ,且的极值点.

(Ⅰ) 的极大值点,求的单调区间(用表示);

(Ⅱ)恰有1解,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设直线与椭圆相交于两个不同的点,与轴相交于点为坐标原点.

(1)证明:

(2)若,求的面积取得最大值时椭圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】(题文)(2017·长春市二模)如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,函数为函数的反函数.

1)求函数的解析式;

2)若方程恰有一个实根,求实数的取值范围;

3)设,若对任意,当时,满足,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某手机生产厂商为迎接5G时代的到来,要生产一款5G手机,在生产之前,该公司对手机屏幕的需求尺寸进行社会调查,共调查了400人,将这400人按对手机屏幕的需求尺寸分为6组,分别是:(单位:英寸),得到如下频率分布直方图:

其中,屏幕需求尺寸在的一组人数为50人.

1)求ab的值;

2)用分层抽样的方法在屏幕需求尺寸为两组人中抽取6人参加座谈,并在6人中选择2人做代表发言,则这2人来自同一分组的概率是多少?

3)若以厂家此次调查结果的频率作为概率,市场随机调查两人,这两人屏幕需求尺寸分别在的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线,圆.以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)若直线的极坐标方程为,设的交点为,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】某人经营一个抽奖游戏,顾客花费元钱可购买一次游戏机会,每次游戏中,顾客从装有个黑球,个红球,个白球的不透明袋子中依次不放回地摸出个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖.顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金元,元、元、元.若经营者将顾客摸出的个球的颜色情况分成以下类别:个黑球,个红球;个红球;:恰有个白球;:恰有个白球;个白球,且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次.

(1)请写出一至四等奖分别对应的类别(写出字母即可);

(2)若经营者不打算在这个游戏的经营中亏本,求的最大值;

(3)若,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.

查看答案和解析>>

同步练习册答案