相关习题
 0  261272  261280  261286  261290  261296  261298  261302  261308  261310  261316  261322  261326  261328  261332  261338  261340  261346  261350  261352  261356  261358  261362  261364  261366  261367  261368  261370  261371  261372  261374  261376  261380  261382  261386  261388  261392  261398  261400  261406  261410  261412  261416  261422  261428  261430  261436  261440  261442  261448  261452  261458  261466  266669 

科目: 来源: 题型:

【题目】甲、乙、丙三名学生一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲、乙、丙三名学生的平均成绩分析,甲、乙、丙3名学生能通过笔试的概率分别是0.60.50.4,能通过面试的概率分别是0.60.60.75.

1)求甲、乙、丙三名学生中恰有一人通过笔试的概率;

2)求经过两次考试后,至少有一人被该高校预录取的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】若数列满足:存在正整数,对任意的,使得成立,则称阶稳增数列.

1)若由正整数构成的数列阶稳增数列,且对任意,数列中恰有,求的值;

2)设等比数列阶稳增数列且首项大于,试求该数列公比的取值范围;

3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:

第一种,每天支付元,没有奖金;

第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;

第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的.

1)工作,记三种付费方式薪酬总金额依次为,写出关于的表达式;

2)该学生在暑假期间共工作天,他会选择哪种付酬方式?

查看答案和解析>>

科目: 来源: 题型:

【题目】函数在区间上的最大值和最小值分别为()

A. 25,-2B. 50,-2C. 50,14D. 50,-14

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ABCD是复平面内的平行四边形,且ABC三点对应的复数分别是1+3i,-i,2+i,求点D对应的复数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用

水量

频数

1

3

2

4

9

26

5

使用了节水龙头50天的日用水量频数分布表

日用

水量

频数

1

5

13

10

16

5

(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;

3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

查看答案和解析>>

科目: 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,(为常数),.曲线在点处的切线与轴平行

(1)的值;

(2)的单调区间和最小值;

(3)对任意恒成立,求实数的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的图象向左平移个单位长度后所得的函数为偶函数,则关于函数下列命题正确的是( )

A. 函数在区间上有最小值 B. 函数在区间上单调递增

C. 函数的一条对称轴为 D. 函数的一个对称点为

查看答案和解析>>

同步练习册答案