科目: 来源: 题型:
【题目】“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M的概率为;同时,有个水平相同的人也在研究项目M,他们各自独立地解决项目M的概率都是.现在李某单独研究项目M,且这个人组成的团队也同时研究项目M,设这个人团队解决项目M的概率为,若,则的最小值是( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C:x2+y2﹣4x+3=0,过原点的直线l与圆C有公共点.
(1)求直线l斜率k的取值范围;
(2)已知O为坐标原点,点P为圆C上的任意一点,求线段OP的中点M的轨迹方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A.函数值域中的每一个数在定义域中一定只有一个数与之对应
B.函数的定义域和值域可以是空集
C.函数的定义域和值域一定是数集
D.函数的定义域和值域确定后,函数的对应关系也就确定了
E.函数的定义域和对应关系确定后,函数的值域也就确定了
查看答案和解析>>
科目: 来源: 题型:
【题目】设圆的圆心为A,直线过点B(1,0)且与轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.
(Ⅰ)证明:为定值,并写出点E的轨迹方程;
(Ⅱ)设点E的轨迹为曲线C1,直线交C1于M,N两点,过B且与垂直的直线与C1交于P,Q两点, 求证:是定值,并求出该定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为。
(1)记甲击中目标的次数为,求的概率分布及数学期望;
(2)求乙至多击目标2次的概率;
(3)求甲恰好比乙多击中目标2次的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动点满足: .
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线交于两点,点关于轴的对称点为(点与点不重合),证明:直线恒过定点,并求该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,多面体EF﹣ABCD中,四边形ABCD是菱形,AB=4,∠BAD=60°,AC,BD相交于O,EF∥AC,点E在平面ABCD上的射影恰好是线段AO的中点.
(Ⅰ)求证:BD⊥平面ACF;
(Ⅱ)若直线AE与平面ABCD所成的角为45°,求平面DEF与平面ABCD所成角(锐角)的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com