相关习题
 0  261357  261365  261371  261375  261381  261383  261387  261393  261395  261401  261407  261411  261413  261417  261423  261425  261431  261435  261437  261441  261443  261447  261449  261451  261452  261453  261455  261456  261457  261459  261461  261465  261467  261471  261473  261477  261483  261485  261491  261495  261497  261501  261507  261513  261515  261521  261525  261527  261533  261537  261543  261551  266669 

科目: 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目: 来源: 题型:

【题目】高中生在被问及“家朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.

(1)请根据以上调查结果将下面列联表补充完整并判断能否有的把握认为“恋家在家里感到最幸福”与城市有关

在家里最幸福

在其它场所最幸福

合计

洛阳高中生

上海高中生

合计

(2) 从被调查的不“恋家”的上海学生中用分层抽样的方法选出4人接受进一步调查从被选出的4 人中随机抽取2人到洛阳交流学习求这2人中含有在“个人空间”感到幸福的学生的概率.

其中d.

查看答案和解析>>

科目: 来源: 题型:

【题目】铁人中学高二学年某学生对其亲属30人饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;

(Ⅱ)根据以上数据完成下列的列联表:

主食蔬菜

主食肉类

合计

50岁以下人数

50岁以上人数

合计人数

(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,曲边三角形中,线段是直线的一部分,曲线段是抛物线的一部分.矩形的顶点分别在线段,曲线段轴上.设点,记矩形的面积为.

(Ⅰ)求函数的解析式并指明定义域;

(Ⅱ)求函数的最大值.

【答案】(Ⅰ) 定义域为;(Ⅱ) 在时,取得最大值.

【解析】试题分析:( I )根据点在直线在抛物线结合图形可得点从而可得函数的解析式联立直线与抛物线的方程即可求得定义域;(II)对函数求导,利用导数研究函数的单调性,从而可求得函数的最大值.

试题解析:( I )

解得 (舍)

因为点

所以

其定义域为

(II)因为

,得(舍)

所以的变化情况如下表

0

极大

因为是函数上的唯一的一个极大值,

所以在时,函数取得最大值.

点睛:利用导数解答函数最值的一般步骤:第一步:利用求单调区间;第二步:解得两个根;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.

型】解答
束】
16

【题目】在各项均为正数的数列中, .

(Ⅰ)当时,求的值;

(Ⅱ)求证:当时,.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上异于原点的任意一点过点的直线交抛物线于另一点轴的正半轴于点且有.当点的横坐标为3为正三角形.

(1)求抛物线的方程

(2)若直线和抛物线有且只有一个公共点试问直线是否过定点若过定点求出定点坐标若不过定点请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)已知函数,求的极值;

(2)已知函数,若存在实数,使得当时,函数的最大值为,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数其中.

(1)函数的图象能否与轴相切?若能,求出实数若不能请说明理由

(2)讨论函数的单调性.

查看答案和解析>>

同步练习册答案