相关习题
 0  261433  261441  261447  261451  261457  261459  261463  261469  261471  261477  261483  261487  261489  261493  261499  261501  261507  261511  261513  261517  261519  261523  261525  261527  261528  261529  261531  261532  261533  261535  261537  261541  261543  261547  261549  261553  261559  261561  261567  261571  261573  261577  261583  261589  261591  261597  261601  261603  261609  261613  261619  261627  266669 

科目: 来源: 题型:

【题目】如图,已知分别是边长为12的正三角形,,四边形为直角梯形,且,点的重心,中点,平面为线段上靠近点的三等分点.

(1)求证:平面

(2)若二面角的余弦值为,试求异面直线所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数的定义域为,且对任意,有,且当时,

(Ⅰ)证明是奇函数;

(Ⅱ)证明上是减函数;

(III)若,,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某食品集团生产的火腿按行业生产标准分成8个等级,等级系数依次为1238,其中为标准 为标准.已知甲车间执行标准,乙车间执行标准生产该产品,且两个车间的产品都符合相应的执行标准.

1)已知甲车间的等级系数的概率分布列如下表,若的数学期望E(X1)=6.4,求 的值;

X1

5

6

7

8

P

0.2

2)为了分析乙车间的等级系数,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7

用该样本的频率分布估计总体,将频率视为概率,求等级系数的概率分布列和均值;

3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目: 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照分成5组,制成了如图所示的频率分布直方图.

1)求图中a的值;

2)设该市有10万个家庭,估计全市月均用水量不低于的家庭数;

3)假设同组中的每个数据都用该组区间的中点值代替,估计全市家庭月均用水量的平均数.

查看答案和解析>>

科目: 来源: 题型:

【题目】有120粒试验种子需要播种,现有两种方案:方案一:将120粒种子分种在40个坑内,每坑3粒;方案二:120粒种子分种在60个坑内,每坑2粒 如果每粒种子发芽的概率为0.5,并且,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(每个坑至多补种一次,且第二次补种的种子颗粒同第一次).假定每个坑第一次播种需要2元,补种1个坑需1元;每个成活的坑可收货100粒试验种子,每粒试验种子收益1元.

(1)用表示播种费用,分别求出两种方案的的数学期望;

(2)用表示收益,分别求出两种方案的收益的数学期望;

(3)如果在某块试验田对该种子进行试验,你认为应该选择哪种方案?

查看答案和解析>>

科目: 来源: 题型:

【题目】甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

从生产的零件内径的尺寸看、谁生产的零件质量较高.

查看答案和解析>>

科目: 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量指数.空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士记录去年某地某月10天的AQI的茎叶图如图.利用该样本估计该地本月空气质量优良()的天数(按这个月总共30天计算)为________

查看答案和解析>>

科目: 来源: 题型:

【题目】某校高一年级开设了丰富多彩的校本课程,现从甲、乙两个班随机抽取了5名学生校本课程的学分,统计如下表.

8

11

14

15

22

6

7

10

23

24

分别表示甲、乙两班抽取的5名学生学分的方差,计算两个班学分的方差.得______,并由此可判断成绩更稳定的班级是______班.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司近年来特别注重创新产品的研发,为了研究年研发经费(单位:万元)对年创新产品销售额(单位:十万元)的影响,对近10年的研发经费与年创新产品销售额,10)的数据作了初步处理,得到如图的散点图及一些统计量的值.

其中

现拟定关于的回归方程为

(1)求的值(结果精确到0.1);

(2)根据拟定的回归方程,预测当研发经费为13万元时,年创新产品销售额是多少?

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

同步练习册答案