相关习题
 0  261447  261455  261461  261465  261471  261473  261477  261483  261485  261491  261497  261501  261503  261507  261513  261515  261521  261525  261527  261531  261533  261537  261539  261541  261542  261543  261545  261546  261547  261549  261551  261555  261557  261561  261563  261567  261573  261575  261581  261585  261587  261591  261597  261603  261605  261611  261615  261617  261623  261627  261633  261641  266669 

科目: 来源: 题型:

【题目】已知数列中,,且对任意正整数都成立,数列的前项和为.

(1)若,且,求

(2)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k的值;若不存在,请说明理由;

(3)若,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数的定义域为D,若函数满足条件:存在,使上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若关于的不等式的解集为,求实数的值;

(2)设,若不等式对任意实数都成立,求实数的取值范围;

(3)设,解关于的不等式组

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有( )种

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目: 来源: 题型:

【题目】2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考已知函数(其中为常数, 为自然对数的底数, ).

)若函数的极值点只有一个,求实数的取值范围;

)当时,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

(2)若bn=2n+1an+2n+1,数列{bn}的前n项和为Tn.求满足不等式2010n的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线与抛物线交于两点,直线轴交于点,且直线恰好平分.

1)求的值;

2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2+1,g(x)=2alnx+1(aR)

(1)求函数h(x)=f(x)g(x)的极值;

(2)当a=e时,是否存在实数k,m,使得不等式g(x)≤ kx+m ≤f(x)恒成立?若存在,请求实数k,m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】空气质量指数AQI是一种反映和评价空气质量的方法,AQI指数与空气质量对应如表所示:

AQI

0~50

51~100

101~150

151~200

201~300

300以上

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某城市2018年12月全月的AQI指数变化统计图:

根据统计图判断,下列结论正确的是(  )

A. 整体上看,这个月的空气质量越来越差

B. 整体上看,前半月的空气质量好于后半个月的空气质量

C. 从AQI数据看,前半月的方差大于后半月的方差

D. 从AQI数据看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,藏粮于地,藏粮于技.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:

使用有机肥料(千克)

3

4

5

6

7

8

9

10

产量增加量 (百斤)

2.1

2.9

3.5

4.2

4.8

5.6

6.2

6.7

1)根据表中的数据,试建立关于的线性回归方程(精确到);

2 若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:

每天16点前的

销售量(单位:千克)

100

110

120

130

140

150

160

频数

10

20

16

16

14

14

10

若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?

附:回归直线方程中的斜率和截距的最小二乘估计公式分别为:

参考数据:

查看答案和解析>>

同步练习册答案