相关习题
 0  261506  261514  261520  261524  261530  261532  261536  261542  261544  261550  261556  261560  261562  261566  261572  261574  261580  261584  261586  261590  261592  261596  261598  261600  261601  261602  261604  261605  261606  261608  261610  261614  261616  261620  261622  261626  261632  261634  261640  261644  261646  261650  261656  261662  261664  261670  261674  261676  261682  261686  261692  261700  266669 

科目: 来源: 题型:

【题目】如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮的视角为30°

1)求观测站到港口的距离;

2)求海轮的航行速度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一张坐标纸上一已作出圆及点折叠此纸片使与圆周上某点重合每次折叠都会留下折痕设折痕与直线的交点为令点的轨迹为.

(1)求轨迹的方程

(2)若直线与轨迹交于两个不同的点且直线与以为直径的圆相切的面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )

78 16 65 72 08 02 63 14 07 02 43 69 69 38 74

32 04 94 23 49 55 80 20 36 35 48 69 97 28 01

A. 05 B. 09 C. 07 D. 20

查看答案和解析>>

科目: 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

2)估算该市80岁及以上长者占全市户籍人口的百分比;

3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:

①80岁及以上长者每人每月发放生活补贴200元;

②80岁以下老人每人每月发放生活补贴120元;

③不能自理的老人每人每月额外发放生活补贴100元.

利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C1x2+y2-2mx-4my+5m2-4=0(mR),圆C2x2+y2=1.

(1)过定点M(1,-2)作圆C2的切线,求切线的方程;

(2)若圆C1与圆C2相交,求m的取值范围;

(3)已知点P(2,0),圆C1上一点A,圆C2上一点B,求||的最小值的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中,正确的是(

A.中,

B.在锐角中,不等式恒成立

C.中,若,则必是等腰直角三角形

D.中,若,则必是等边三角形

查看答案和解析>>

科目: 来源: 题型:

【题目】某房地产开发商投资81万元建一座写字楼,第一年装修维护费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.

1)若扣除投资和各种装修维护费,则从第几年开始获取纯利润?

2)若干年后开发商为了投资其他项目,有两种处理方案:①纯利润总和最大时,以10万元出售该楼;②年平均利润最大时以46万元出售该楼,问哪种方案更优?

查看答案和解析>>

科目: 来源: 题型:

【题目】为达到节水节电的目的,某家庭记录了20天的日用电量xi(单位:度)的频数分布表和这20天相应的日用水量yi(单位:m3)的频率分布直方图如下:

日用电量xi

[0,2)

[2,4)

[4,6)

[6,8)

[8,10)

频数(天)

2

5

7

3

3

(1)假设水费为2.5元/m3,电费为0.6元/度,用以上数据估计该家庭日用电量的平均值和日用水量的平均值,并据此估计该家庭一个月的水费和电费一共是多少?(一个月按30天算,同一组中的数据以这组数据所在区间中点的值作代表);

(2)假设该家庭的日用水量y和日用电量x可用线性回归模型来拟合,请利用(1)中的计算数据及所给的参考数据和公式,建立yx的回归方程,预测若该家庭日用电量为20度时的日用水量是多少m3?(回归方程的系数小数点后保留2位小数)

参考数据:xiyi=65,612

参考公式:回归方程x中斜率和截距的公式分别为:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,且在轴上的顶点分别为.

1)求椭圆的方程;

2)若直线轴交于点,点为直线上异于点的任一点,直线分别与椭圆交于点,试问直线能否通过椭圆的焦点?若能,求出的值,若不能,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左焦点为,离心率

(I)求椭圆C的标准方程;

(II)已知直线交椭圆C于A,B两点.

①若直线经过椭圆C的左焦点F,交y轴于点P,且满足.求证:为定值;

②若,求面积的取值范围.

查看答案和解析>>

同步练习册答案