科目: 来源: 题型:
【题目】如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮,的视角为30°.
(1)求观测站到港口的距离;
(2)求海轮的航行速度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一张坐标纸上一已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为.
(1)求轨迹的方程;
(2)若直线与轨迹交于两个不同的点,且直线与以为直径的圆相切,若,求的面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目: 来源: 题型:
【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:
(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:
①80岁及以上长者每人每月发放生活补贴200元;
②80岁以下老人每人每月发放生活补贴120元;
③不能自理的老人每人每月额外发放生活补贴100元.
利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C1:x2+y2-2mx-4my+5m2-4=0(m∈R),圆C2:x2+y2=1.
(1)过定点M(1,-2)作圆C2的切线,求切线的方程;
(2)若圆C1与圆C2相交,求m的取值范围;
(3)已知点P(2,0),圆C1上一点A,圆C2上一点B,求||的最小值的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某房地产开发商投资81万元建一座写字楼,第一年装修维护费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.
(1)若扣除投资和各种装修维护费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案:①纯利润总和最大时,以10万元出售该楼;②年平均利润最大时以46万元出售该楼,问哪种方案更优?
查看答案和解析>>
科目: 来源: 题型:
【题目】为达到节水节电的目的,某家庭记录了20天的日用电量xi(单位:度)的频数分布表和这20天相应的日用水量yi(单位:m3)的频率分布直方图如下:
日用电量xi | [0,2) | [2,4) | [4,6) | [6,8) | [8,10) |
频数(天) | 2 | 5 | 7 | 3 | 3 |
(1)假设水费为2.5元/m3,电费为0.6元/度,用以上数据估计该家庭日用电量的平均值和日用水量的平均值,并据此估计该家庭一个月的水费和电费一共是多少?(一个月按30天算,同一组中的数据以这组数据所在区间中点的值作代表);
(2)假设该家庭的日用水量y和日用电量x可用线性回归模型来拟合,请利用(1)中的计算数据及所给的参考数据和公式,建立y与x的回归方程,预测若该家庭日用电量为20度时的日用水量是多少m3?(回归方程的系数小数点后保留2位小数)
参考数据:xiyi=65,612
参考公式:回归方程x中斜率和截距的公式分别为:
,
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,且在轴上的顶点分别为,.
(1)求椭圆的方程;
(2)若直线与轴交于点,点为直线上异于点的任一点,直线分别与椭圆交于点,试问直线能否通过椭圆的焦点?若能,求出的值,若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左焦点为,离心率.
(I)求椭圆C的标准方程;
(II)已知直线交椭圆C于A,B两点.
①若直线经过椭圆C的左焦点F,交y轴于点P,且满足.求证:为定值;
②若,求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com