相关习题
 0  261571  261579  261585  261589  261595  261597  261601  261607  261609  261615  261621  261625  261627  261631  261637  261639  261645  261649  261651  261655  261657  261661  261663  261665  261666  261667  261669  261670  261671  261673  261675  261679  261681  261685  261687  261691  261697  261699  261705  261709  261711  261715  261721  261727  261729  261735  261739  261741  261747  261751  261757  261765  266669 

科目: 来源: 题型:

【题目】屠呦呦,第一位获得诺贝尔科学奖项的中国本土科学家,在2015年获得诺贝尔生理学或医学奖,理由是她发现了青蒿素.这种药品可以有效降低疟疾患者的死亡率从青篙中提取的青篙素抗疟性超强,几乎达到100%.据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(Ⅰ)写出服药一次后yt之间的函数关系式

(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;

(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列命题,其中所有正确命题的序号是__________

①抛物线的准线方程为

②过点作与抛物线只有一个公共点的直线仅有1条;

是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.

④抛物线上到直线距离最短的点的坐标为.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

关于上述样本的下列结论中,正确的是( )

A. ①③都可能为分层抽样 B. ②④都不能为分层抽样

C. ①④都可能为系统抽样 D. ②③都不能为系统抽样

查看答案和解析>>

科目: 来源: 题型:

【题目】某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为分钟,有1200名小学生参加了此项调查,调查所得到的数据用程序框图处理(如图),若输出的结果是840,若用样本频率估计概率,则平均每天做作业的时间在0~60分钟内的学生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中, 两两垂直, ,且 .

(1)求二面角的余弦值;

(2)已知点为线段上异于的点,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;

(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)loga(x1)(a0,且a≠1)

(1)求函数f(x)的解析式;

(2)若-1f(1)1,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解我市参加2018年全国高中数学联赛的学生考试结果情况,从中选取60名同学将其成绩(百分制,均为正数)分成六组后,得到部分频率分布直方图(如图),观察图形,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;

(2)根据频率分布直方图,估计本次考试成绩的众数、中位数、均值.

查看答案和解析>>

同步练习册答案