相关习题
 0  261607  261615  261621  261625  261631  261633  261637  261643  261645  261651  261657  261661  261663  261667  261673  261675  261681  261685  261687  261691  261693  261697  261699  261701  261702  261703  261705  261706  261707  261709  261711  261715  261717  261721  261723  261727  261733  261735  261741  261745  261747  261751  261757  261763  261765  261771  261775  261777  261783  261787  261793  261801  266669 

科目: 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目: 来源: 题型:

【题目】阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点AB的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】EF分别是正方体ABCDA1B1C1D1的棱DC上两点,且AB=2,EF=1,给出下列四个命题:

三棱锥D1B1EF的体积为定值;

异面直线D1B1EF所成的角为45°;

D1B1⊥平面B1EF

直线D1B1与平面B1EF所成的角为60°.

其中正确的命题为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】函数.

(1)若,试讨论函数的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.

(I)求椭圆C的方程和点T的坐标;

)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为净化新安江水域的水质,市环保局于2017年底在新安江水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2018年二月底测得蒲草覆盖面积为,2018年三月底测得覆盖面积为,蒲草覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型可供选择.

(Ⅰ)分别求出两个函数模型的解析式;

(Ⅱ)若市环保局在2017年年底投放了的蒲草,试判断哪个函数模型更合适?并说明理由;

(Ⅲ)利用(Ⅱ)的结论,求蒲草覆盖面积达到的最小月份.

(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数对任意实数xy恒有,当x>0时,f(x)<0,且.

(1)判断的奇偶性;

(2)在区间[-3,3]上的最大值;

(3)对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,圆,直线与抛物线相切于点,与圆相切于点.

(1)若直线的斜率,求直线和抛物线的方程;

(2)设为抛物线的焦点,设的面积分别为,若,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线lmxy=1,若直线l与直线x+mm﹣1)y=2垂直,则m的值为_____,动直线lmxy=1被圆Cx2﹣2x+y2﹣8=0截得的最短弦长为_____

查看答案和解析>>

同步练习册答案