相关习题
 0  261708  261716  261722  261726  261732  261734  261738  261744  261746  261752  261758  261762  261764  261768  261774  261776  261782  261786  261788  261792  261794  261798  261800  261802  261803  261804  261806  261807  261808  261810  261812  261816  261818  261822  261824  261828  261834  261836  261842  261846  261848  261852  261858  261864  261866  261872  261876  261878  261884  261888  261894  261902  266669 

科目: 来源: 题型:

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地上年度电价为元,年用电量为亿千瓦时.本年度计划将电价调至之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,.

1)求之间的函数关系式;

2)若每千瓦时电的成本价为元,则电价调至多少时,本年度电力部门的收益将比上年增加[收益=用电量×(实际电价-成本价)]

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,B1B2是椭圆的短轴端点,P是椭圆上异于点B1B2的一动点.当直线PB1的方程为时,线段PB1的长为

1)求椭圆的标准方程;

2设点Q满足: .求证:PB1B2QB1B2的面积之比为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,AB AC,点EF分别在棱BB1CC1上(均异于端点),且∠ABEACFAEBB1AFCC1

求证:(1)平面AEF⊥平面BB1C1C

2BC //平面AEF

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点与点的距离和它到直线的距离的比是.

(1)求动点的轨迹的方程

(2)已知定点是轨迹上两个不同动点直线的斜率分别为试判断直线的斜率是否为定值并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世界卫生组织设定的最宽限值,即日均值在以下空气质量为优;在之间空气质量为良;在之间空气质量为轻度污染.某市环保局从该市2018年上半年每天的日均值数据中随机抽取20天的数据作为样本,将日均值统计如下

日均值(

天数

4

6

5

3

2

(1)在空气质量为轻度污染的数据中,随机抽取两天日均值数据,求其中恰有一天日均值数据在之间的概率;

(2)将以上样本数据绘制成频率分布直方图(直接作图):

(3)该市规定:全年日均值的平均数不高于,则认定该市当年的空气质量达标.现以这20天的日均值的平均数来估计2018年的空气质量情况,试预测该市2018年的空气质量是否达标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数曲线在点处的切线与直线垂直.

注:为自然对数的底数.

1若函数在区间上存在极值,求实数的取值范围;

2求证:当时,.

查看答案和解析>>

同步练习册答案