科目: 来源: 题型:
【题目】某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,,.
求图中的值;
根据频率分布直方图,估计这名学生的平均分;
若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.
分数段 | |||
:5 | 1:2 | 1:1 |
查看答案和解析>>
科目: 来源: 题型:
【题目】给出如图数阵的表格形式,表格内是按某种规律排列成的有限个正整数.
(1)记第一行的自左至右构成数列,是的前项和,试求的表达式;
(2)记为第行与第列交点的数字,观察数阵,若,试求出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的部分图象如图所示,且相邻的两个最值点的距离为.
(1)求函数的解析式;
(2)若将函数的图象向左平移1个单位长度后得到函数的图象,关于的不等式在上有解,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.
该公司将近天,每天揽件数量统计如下:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
(1)某人打算将, , 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;
(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中, , , ,则阳马的外接球的表面积是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;
“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
(完善列联表,并说明理由).
亩产量\降雨量 | 合计 | ||
<600 | 2 | ||
1 | |||
合计 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:,其中)
查看答案和解析>>
科目: 来源: 题型:
【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数(万人)与沙漠中所需环保车辆数量(辆),得到如下统计表:
参会人数(万人) | 11 | 9 | 8 | 10 | 12 |
所需环保车辆(辆) | 28 | 23 | 20 | 25 | 29 |
(1)根据统计表所给5组数据,求出关于的线性回归方程.
(2)已知租用的环保车平均每辆的费用(元)与数量(辆)的关系为
.主办方根据实际参会人数为所需要投入使用的环保车,
每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少?(注:利润主办方支付费用租用车辆的费用).
参考公式:
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列的前项和为,且成等比数列,且.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,为数列的前项和.若对于任意的,都有恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com