相关习题
 0  261775  261783  261789  261793  261799  261801  261805  261811  261813  261819  261825  261829  261831  261835  261841  261843  261849  261853  261855  261859  261861  261865  261867  261869  261870  261871  261873  261874  261875  261877  261879  261883  261885  261889  261891  261895  261901  261903  261909  261913  261915  261919  261925  261931  261933  261939  261943  261945  261951  261955  261961  261969  266669 

科目: 来源: 题型:

【题目】已知标准方程下的椭圆的焦点在轴上,且经过点它的一个焦点恰好与抛物线的焦点重合.椭圆的上顶点为过点的直线交椭圆于两点,连接,记直线的斜率分别为.

(1)求椭圆的标准方程;

(2)求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为中边所对的角为,经测量已知.

1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;

2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记的面积分别为,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上个圆最多可以将平面分成个部分.

的值;

猜想的表达式并证明;

证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】北方某市一次全市高中女生身高统计调查数据显示:全市名高中女生的身高(单位: 服从正态分布.现从某高中女生中随机抽取名测量身高测量发现被测学生身高全部在之间现将测量结果按如下方式分成组:第下图是按上述分组方法得到的频率分布直方图.

(1)求这名女生身高不低于的人数;

(2)在这名女生身高不低于的人中任意抽取将该人中身高排名(从高到低)在全市前名的人数记为的数学期望.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,ADAB,∠CAB60°,∠BCD120°,AC2.

1)若∠ABC30°,求DC

2)记∠ABCθ,当θ为何值时,△BCD的面积有最小值?求出最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,EF分别为A1C1BC的中点,MN分别为A1BA1C的中点.求证:

1MN∥平面ABC

2EF∥平面AA1B1B.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图在直棱柱中,

.

(1)证明:直线平面

(2)求平面与平面所成的锐二面角的余弦.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据下列条件解三角形,有两解的有(

A.已知ab2B45°B.已知a2bA45°

C.已知b3cC60°D.已知a2c4A45°

查看答案和解析>>

科目: 来源: 题型:

【题目】已知分别为椭圆右顶点和上顶点,且直线的斜率为,右焦点到直线的距离为

求椭圆的方程;

若直线 与椭圆交于两点,且直线的斜率之和为1,求实数的取值范围.

查看答案和解析>>

同步练习册答案