科目: 来源: 题型:
【题目】
某初级中学共有学生2000名,各年级男、女生人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
求x的值;
现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
已知y245,z245,求初三年级中女生比男生多的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;
(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于和,设线段的长分别为,证明是定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。
(1)求第3、4、5组的频率;
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于6中特等奖,等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中二等奖的概率;
(2)求未中奖的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2=b.
(1)求证:a,b,c成等差数列;
(2)若∠B=60°,b=4,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】直三棱柱中,,分别是,的中点,,为棱上的点.
证明:;
证明:;
是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出以下命题,其中真命题的个数是( )
①若“或”是假命题,则“且”是真命题;
②命题“若,则或”为真命题;
③已知空间任意一点和不共线的三点,,,若,则,,,四点共面;
④直线与双曲线交于,两点,若,则这样的直线有3条;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量,,,,函数,的最小正周期为.
(1)求的单调增区间;
(2)方程;在上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆过点,,且圆心在直线上,过点作直线与圆:交于两点,.
(1)求圆的方程;
(2)当时,若于圆交于,且,求直线的方程;
(3)若点恰好是线段的中点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com