相关习题
 0  261800  261808  261814  261818  261824  261826  261830  261836  261838  261844  261850  261854  261856  261860  261866  261868  261874  261878  261880  261884  261886  261890  261892  261894  261895  261896  261898  261899  261900  261902  261904  261908  261910  261914  261916  261920  261926  261928  261934  261938  261940  261944  261950  261956  261958  261964  261968  261970  261976  261980  261986  261994  266669 

科目: 来源: 题型:

【题目】已知直线,则下列结论正确的是(

A.直线的倾斜角是B.若直线

C.到直线的距离是D.与直线平行的直线方程是

查看答案和解析>>

科目: 来源: 题型:

【题目】设二次函数的图像过点,且对于任意实数,不等式恒成立

(1)求的表达式;

(2)设,若上是增函数,求实数的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:

年龄段

人数(单位:人)

180

180

160

80

约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.

(1)抽出的青年观众与中年观众分别为多少人?

(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?

热衷关心民生大事

不热衷关心民生大事

总计

青年

12

中年

5

总计

30

(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目: 来源: 题型:

【题目】设正项数列的前项和为,且满足:

(Ⅰ)求数列的通项公式;

(Ⅱ)若正项等比数列满足,且,数列的前项和为,若对任意,均有恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数,如果存在函数为常数),使得对一切实数都成立,则称为函数的一个承托函数.给出如下命题:

① 函数是函数的一个承托函数;

② 函数是函数的一个承托函数;

③ 若函数是函数的一个承托函数,则的取值范围是

④ 值域是的函数不存在承托函数。 其中,所有正确命题的序号是__

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求函数的值域;

(2)若函数的最大值是,求的值;

(3)已知,若存在两个不同的正数,当函数的定义域为时,的值域为,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

(1)将 的方程化为普通方程,并说明它们分别表示什么曲线?

(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点上,点的中点,求点到直线距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .

(1)求椭圆 的方程;

(2)过点 的直线 交椭圆于 两个不同的点,且 ,求 的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校组织了一次新高考质量测评,在成绩统计分析中,某班的数学成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

5

6

8

6

2

3

3

5

6

8

9

7

1

2

2

3

4

5

6

7

8

9

8

9

5

8

1)求该班数学成绩在的频率及全班人数;

2)根据频率分布直方图估计该班这次测评的数学平均分;

3)若规定90分及其以上为优秀,现从该班分数在80分及其以上的试卷中任取2份分析学生得分情况,求在抽取的2份试卷中至少有1份优秀的概率.

查看答案和解析>>

同步练习册答案