相关习题
 0  261804  261812  261818  261822  261828  261830  261834  261840  261842  261848  261854  261858  261860  261864  261870  261872  261878  261882  261884  261888  261890  261894  261896  261898  261899  261900  261902  261903  261904  261906  261908  261912  261914  261918  261920  261924  261930  261932  261938  261942  261944  261948  261954  261960  261962  261968  261972  261974  261980  261984  261990  261998  266669 

科目: 来源: 题型:

【题目】盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.

(1)从盒中一次随机取出2个球,求取出的2个球的颜色相同的概率P;

(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).

查看答案和解析>>

科目: 来源: 题型:

【题目】1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数,我们准备张不同的卡片,其中写有数字0,1,…,的卡片各有如果用这些卡片表示进制数,通过不同的卡片组合,这些卡片可以表示个不同的整数例如时,我们可以表示出个不同的整数假设卡片的总数为一个定值,那么进制的效率最高则意味着张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?  

A. 二进制 B. 三进制 C. 十进制 D. 十六进制

查看答案和解析>>

科目: 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目: 来源: 题型:

【题目】设n∈N*,f(n)=3n+7n-2.

(1)求f(1),f(2),f(3)的值;

(2)证明:对任意正整数n,f(n)是8的倍数.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<….设集合Am={n|an≤m,m∈N*),将集合Am中的元素的最大值记为bm,即bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.

例如,数列1,3,5的伴随数列为1,1,2,2,3.

(I)若数列{an}的伴随数列为1,1,2,2,2,3,3,3,3……,请写出数列{an};

(II)设an=4n-1,求数列{an}的伴随数列{bn}的前50项之和;

(III)若数列{an}的前n项和(其中c为常数),求数列{an}的伴随数列{bm}的前m项和Tm.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=.

(I)求f(x)在区间[1,a](a>1)上的最小值;

(II)若关于x的不等式f2(x)+mf(x)>0只有两个整数解,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线.

(1)求曲线的普通方程,曲线的直角坐标方程;

(2)若点为曲线上的任意一点,为曲线上的任意一点,求线段的最小值,并求此时的的坐标;

(3)过(2)中求出的点做一直线,交曲线两点,求面积的最大值(为直角坐标系的坐标原点),并求出此时直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均体育锻炼时间在的学生评价为“锻炼达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

20

110

合计

并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?

(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,再从这5人中选出2人作重点发言,求作重点发言的2人中,至少1人是女生的概率.

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知椭圆C: (a>b>0)的离心率为,F为椭圆C的右焦点.A(-a,0),|AF|=3.

(I)求椭圆C的方程;

(II)设O为原点,P为椭圆上一点,AP的中点为M.直线OM与直线x=4交于点D,过O且平行于AP的直线与直线x=4交于点E.求证:∠ODF=∠OEF.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

同步练习册答案