科目: 来源: 题型:
【题目】如图,矩形ADEF与梯形ABCD所在的平面互相垂直,,,,,,M为CE的中点,N为CD中点.
求证:平面平面ADEF;
求证:平面平面BDE;
求点D到平面BEC的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差。现有圆心角为,半径等于4米的弧田.下列说法不正确的是( )
A. “弦”米,“矢”米
B. 按照经验公式计算所得弧田面积()平方米
C. 按照弓形的面积计算实际面积为()平方米
D. 按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )
查看答案和解析>>
科目: 来源: 题型:
【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是( )
A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐
B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐
C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐
D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为,求C的大小。
查看答案和解析>>
科目: 来源: 题型:
【题目】随着快递行业的崛起,中国快递业务量惊人,2018年中国快递量世界第一,已连续五年突破五百亿件,完全超越美日欧的总和,稳居世界第一名.某快递公司收取费的标准是:不超过1kg的包裹收费8元;超过1kg的包裹,在8元的基础上,每超过1kg(不足1kg,按1kg计算)需再收4元.
该公司将最近承揽(接收并发送)的100件包裹的质量及件数统计如下(表1):
表1:
公司对近50天每天承揽包裹的件数(在表2中的“件数范围”内取的一个近似数据)、件数范围及天数,列表如下(表2):
表2:
(1)将频率视为概率,计算该公司未来3天内恰有1天揽件数在100~299之间的概率;
(2)①根据表1中最近100件包裹的质量统计,估计该公司对承揽的每件包裹收取快递费的平均值:
②根据以上统计数据,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余用作其他费用.目前,前台有工作人员5人,每人每天揽件数不超过100件,日工资80元.公司正在考虑是否将前台人员裁减1人,试计算裁员前、后公司每天揽件数的数学期望;若你是公司决策者,根据公司每天所获利润的期望值,决定是否裁减前台工作人员1人?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形, ,点为棱的中点,点在棱上运动.
(1)求证 ;
(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;
(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标坐标系中,过点P(1,0)的直线l的参数方程为(为参数, ),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知顶点在极轴上,开口向右的抛物线C经过极坐标为(2, )的点Q.
(1)求C的极坐标方程;
(2)若l与C交于A、B两点,且|PA|=2|PB|,求tan的值。
查看答案和解析>>
科目: 来源: 题型:
【题目】有以下判断:①与表示同一函数;②函数的图像与直线最多有一个交点;③不是函数;④若点在的图像上,则函数的图像必过点.其中正确的判断有___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com