科目: 来源: 题型:
【题目】[选修4一4:坐标系与参数方程]已知直线l过原点且倾斜角为, ,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为psin =4cos.
(I)写出直线l的极坐标方程和曲线C 的直角坐标方程;
(Ⅱ)已知直线l过原点且与直线l相互垂直,若lC=-M,lC=N,其中M,N不与原点重合,求△OMN 面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面内两点.
(1)求的中垂线方程;
(2)求过点且与直线平行的直线的方程;
(3)一束光线从点射向(2)中的直线,若反射光线过点,求反射光线所在的直线方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x(e+1)
(I)求函数y=f(x)的图象在点(0,f(0))处的切线方程;
(II)若函数g(x)=f(x)-ae-x,求函数g(x)在[1,2]上的最大值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆M:,设点B,C是直线l:上的两点,它们的横坐标分别是t,,P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
若,,求直线PA的方程;
经过A,P,M三点的圆的圆心是D,
将表示成a的函数,并写出定义域.
求线段DO长的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭园C: +=1(a>b>0)的左、右焦点分别为F1,F2.且椭圆C过点(,-),离心率e=;点P在椭圆C 上,延长PF1与椭圆C交于点Q,点R是PF2中点.
(I )求椭圆C的方程;
(II )若O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值。
查看答案和解析>>
科目: 来源: 题型:
【题目】下表是一个容量为20的样本数据分组后的频率分布表:
分组 | [8.5,11.5] | [11.5,14.5] | [14.5,17.5] | [17.5,20.5] |
频数 | 4 | 2 | 6 | 8 |
(I)若用组中值代替本组数据的平均数,请计算样本的平均数;
(II)以频率估计概率,若样本的容量为2000,求在分组[14.5,17.5)中的频数;
(Ⅲ)若从数据在分组[8.5,11.5)与分组[11.5,14.5)的样本中随机抽取2个,求恰有1个样本落在分组[11.5,14.5)的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱ABCA1B1C1中,BC=BB1,∠BAC=∠BCA=∠ABC,点E是A1B与AB1的交点,点D在线段AC上,B1C∥平面A1BD.
(1)求证:BD⊥A1C;
(2)求证:AB1⊥平面A1BC。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com