相关习题
 0  261830  261838  261844  261848  261854  261856  261860  261866  261868  261874  261880  261884  261886  261890  261896  261898  261904  261908  261910  261914  261916  261920  261922  261924  261925  261926  261928  261929  261930  261932  261934  261938  261940  261944  261946  261950  261956  261958  261964  261968  261970  261974  261980  261986  261988  261994  261998  262000  262006  262010  262016  262024  266669 

科目: 来源: 题型:

【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移个单位而得到.

⑴求f(x)的解析式与最小正周期

⑵求f(x)在x∈(0,π)上的值域与单调性.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是(  )

A. 若命题都是真命题,则命题“”为真命题

B. 命题“”的否定是“,

C. 命题:“若,则”的否命题为“若,则

D. ”是“”的必要不充分条件

查看答案和解析>>

科目: 来源: 题型:

【题目】下面几种推理是合情推理的是(  )

①由圆的性质类比出球的有关性质;

②由直角三角形、等腰三角形、等边三角形内角和是归纳出所有三角形的内角和都是;③由,满足,,推出是奇函数;

④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.

A. ①②B. ①③④C. ②④D. ①②④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

)求椭圆C的方程;

)点P(23)Q2-3)在椭圆上,AB是椭圆上位于直线PQ两恻的动点,

若直线AB的斜率为,求四边形APBQ面积的最大值;

AB运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】将函数图象向左平移个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,则下列说法中正确的是( )

A.的最大值为B.是奇函数

C.的图象关于点对称D.上单调递减

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某早餐店对一款新口味的酸奶进行了一段时间试销,定价为5元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照[15,25],(25,35],(35,45],(45,55]分组,得到如下频率分布直方图,以不同销量的频率估计概率.试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱50瓶,批发成本85元;小箱每箱30瓶,批发成本65元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为(45,55]时看作销量为50瓶).

(1)设早餐店批发一大箱时,当天这款酸奶的利润为随机变量X,批发一小箱时,当天这款酸奶的利润为随机变量Y,求X和Y的分布列;

(2)从早餐店的收益角度和利用所学的知识作为决策依据,该早餐店应每天批发一大箱还是一小箱?(必须作出一种合理的选择)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在上的函数和数列满足下列条件:,当时,,其中均为非零常数.

1)若是等差数列,求实数的值;

2)令),若,求数列的通项公式;

3)令),若,数列满足,若数列有最大值,最小值,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 .

1)若曲线处的切线与直线垂直,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3)若上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案