科目: 来源: 题型:
【题目】椭圆:的左、右焦点分别为、,若椭圆过点.
(1)求椭圆的方程;
(2)若为椭圆的左、右顶点, ()为椭圆上一动点,设直线分别交直线: 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.
【答案】(1) ;(2)答案见解析.
【解析】试题分析:(1)将点坐标代人椭圆方程 并与离心率联立方程组,解得, (2)根据点斜式得直线方程,与直线联立解得点坐标,根据向量关系得为直径的圆方程,最后代人椭圆方程进行化简,并根据恒等式成立条件求定点坐标.
试题解析:(1)由已知,
∴①
∵椭圆过点,
∴②
联立①②得,
∴椭圆方程为
(2)设,已知
∵,∴
∴都有斜率
∴
∴③
∵
∴④
将④代入③得
设方程
∴方程
∴
由对称性可知,若存在定点,则该定点必在轴上,设该定点为
则
∴
∴,∴
∴存在定点或以线段为直径的圆恒过该定点.
点睛:定点的探索与证明问题
(1)探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.
(2)从特殊情况入手,先探求定点,再证明与变量无关.
【题型】解答题
【结束】
21
【题目】已知函数,曲线在处的切线经过点.
(1)证明: ;
(2)若当时, ,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数。
(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。
(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;
(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,
恒有f(x)>g(x)成立。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱柱的底面为菱形, , , 为中点.
(1)求证: 平面;
(2)若底面,且直线与平面所成线面角的正弦值为,求的长.
【答案】(1)证明见解析;(2)2.
【解析】试题分析:(1)设为的中点,根据平几知识可得四边形是平行四边形,即得,再根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面一个法向量,根据向量数量积求向量夹角,再根据线面角与向量夹角互余关系列等式,解得的长.
试题解析:(1)证明:设为的中点,连
因为,又,所以 ,
所以四边形是平行四边形,
所以
又平面, 平面,
所以平面.
(2)因为是菱形,且,
所以是等边三角形
取中点,则,
因为平面,
所以,
建立如图的空间直角坐标系,令,
则, , , ,
, , ,
设平面的一个法向量为,
则且,
取,设直线与平面所成角为,
则,
解得,故线段的长为2.
【题型】解答题
【结束】
20
【题目】椭圆:的左、右焦点分别为、,若椭圆过点.
(1)求椭圆的方程;
(2)若为椭圆的左、右顶点, ()为椭圆上一动点,设直线分别交直线: 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,直线是图象的一条对称轴.
(1)求的单调递减区间;
(2)已知函数的图象是由图象上的各点的横坐标伸长到原来的4倍,然后再向左平移个单位长度得到,若,,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析.求事件“”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
其中: , ,
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)
(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?
【答案】(1)答案见解析;(2) ;(3)中度高血压人群.
【解析】试题分析:(1)将数据对应描点,即得散点图,(2)先求均值,再代人公式求,利用求,(3)根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.
试题解析:(1)
(2)
∴
∴回归直线方程为.
(3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为(mmHg)∵
∴收缩压为180mmHg的70岁老人为中度高血压人群.
【题型】解答题
【结束】
19
【题目】如图,四棱柱的底面为菱形, , , 为中点.
(1)求证: 平面;
(2)若底面,且直线与平面所成线面角的正弦值为,求的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知三个内角所对的边分别是,若.
(1)求角;
(2)若的外接圆半径为2,求周长的最大值.
【答案】(1) ;(2) .
【解析】试题分析:(1)由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2)先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.
试题解析:(1)由正弦定理得,
∴,∴,即
因为,则.
(2)由正弦定理
∴, , ,
∴周长
∵,∴
∴当即时
∴当时, 周长的最大值为.
【题型】解答题
【结束】
18
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
其中: , ,
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)
(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
科目: 来源: 题型:
【题目】设抛物线的焦点为,过点的直线与抛物线相交于两点,与抛物线的准线相交于点, ,则与的面积之比__________.
【答案】
【解析】
由题意可得抛物线的焦点的坐标为,准线方程为。
如图,设,过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则
,解得。
把代入抛物线,解得。
∴直线AB经过点与点,
故直线AB的方程为,代入抛物线方程解得。
∴。
在中, ,
∴
∴。答案:
点睛:
在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.
【题型】填空题
【结束】
17
【题目】已知三个内角所对的边分别是,若.
(1)求角;
(2)若的外接圆半径为2,求周长的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全国累计报告确诊病例数量(万人) | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?
(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com