相关习题
 0  261844  261852  261858  261862  261868  261870  261874  261880  261882  261888  261894  261898  261900  261904  261910  261912  261918  261922  261924  261928  261930  261934  261936  261938  261939  261940  261942  261943  261944  261946  261948  261952  261954  261958  261960  261964  261970  261972  261978  261982  261984  261988  261994  262000  262002  262008  262012  262014  262020  262024  262030  262038  266669 

科目: 来源: 题型:

【题目】椭圆:的左、右焦点分别为,若椭圆过点.

(1)求椭圆的方程;

(2)若为椭圆的左、右顶点, )为椭圆上一动点,设直线分别交直线 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1将点坐标代人椭圆方程 并与离心率联立方程组,解得 2根据点斜式得直线方程,与直线联立解得点坐标,根据向量关系得为直径的圆方程,最后代人椭圆方程进行化简,并根据恒等式成立条件求定点坐标.

试题解析:(1)由已知

∵椭圆过点

联立①②得

∴椭圆方程为

(2)设,已知

,∴

都有斜率

将④代入③得

方程

方程

由对称性可知,若存在定点,则该定点必在轴上,设该定点为

,∴

∴存在定点以线段为直径的圆恒过该定点.

点睛:定点的探索与证明问题

(1)探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.

(2)从特殊情况入手,先探求定点,再证明与变量无关.

型】解答
束】
21

【题目】已知函数,曲线处的切线经过点.

(1)证明:

(2)若当时, ,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。

(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;

(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,

恒有f(x)>g(x)成立。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱柱的底面为菱形, 中点.

(1)求证: 平面

(2)若底面,且直线与平面所成线面角的正弦值为,求的长.

【答案】(1)证明见解析;(2)2.

【解析】试题分析:(1的中点,根据平几知识可得四边形是平行四边形,即得,再根据线面平行判定定理得结论,2根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面一个法向量,根据向量数量积求向量夹角,再根据线面角与向量夹角互余关系列等式,解得的长.

试题解析:(1)证明:设的中点,连

因为,又所以

所以四边形是平行四边形,

所以

平面 平面

所以平面.

(2)因为是菱形,且

所以是等边三角形

中点,则

因为平面

所以

建立如图的空间直角坐标系,令

设平面的一个法向量为

,设直线与平面所成角为

解得,故线段的长为2.

型】解答
束】
20

【题目】椭圆:的左、右焦点分别为,若椭圆过点.

(1)求椭圆的方程;

(2)若为椭圆的左、右顶点, )为椭圆上一动点,设直线分别交直线 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,直线图象的一条对称轴.

1)求的单调递减区间;

2)已知函数的图象是由图象上的各点的横坐标伸长到原来的4倍,然后再向左平移个单位长度得到,若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)

(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

【答案】(1)答案见解析;(2) (3)中度高血压人群.

【解析】试题分析:(1将数据对应描点,即得散点图,2先求均值,再代人公式求,利用,(3根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.

试题解析:(1)

(2)

∴回归直线方程为.

3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为mmHg

∴收缩压为180mmHg的70岁老人为中度高血压人群.

型】解答
束】
19

【题目】如图,四棱柱的底面为菱形, 中点.

(1)求证: 平面

(2)若底面,且直线与平面所成线面角的正弦值为,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(1由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.

试题解析:1)由正弦定理得

,∴,即

因为,则.

(2)由正弦定理

∴周长

∴当

∴当 周长的最大值为.

型】解答
束】
18

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

查看答案和解析>>

科目: 来源: 题型:

【题目】设抛物线的焦点为过点的直线与抛物线相交于两点,与抛物线的准线相交于点 的面积之比__________

【答案】

【解析】

由题意可得抛物线的焦点的坐标为准线方程为

如图,设A,B分别向抛物线的准线作垂线,垂足分别为E,N

解得

代入抛物线解得

∴直线AB经过点与点

故直线AB的方程为代入抛物线方程解得

答案:

点睛:

在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。抛物线定义有两种用途:一是当已知曲线是抛物线时抛物线上的点M满足定义它到准线的距离为d|MF|d可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义从而得到动点的轨迹是抛物线.

型】填空
束】
17

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列.

(1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若是数列的前项和,求满足的所有正整数.

查看答案和解析>>

科目: 来源: 题型:

【题目】这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从202021日至27日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:

日期

1

2

3

4

5

6

7

全国累计报告确诊病例数量(万人)

1.4

1.7

2.0

2.4

2.8

3.1

3.5

1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合的关系?

2)求出关于的线性回归方程(系数精确到0.01.并预测210日全国累计报告确诊病例数.

参考数据:.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

同步练习册答案