相关习题
 0  261854  261862  261868  261872  261878  261880  261884  261890  261892  261898  261904  261908  261910  261914  261920  261922  261928  261932  261934  261938  261940  261944  261946  261948  261949  261950  261952  261953  261954  261956  261958  261962  261964  261968  261970  261974  261980  261982  261988  261992  261994  261998  262004  262010  262012  262018  262022  262024  262030  262034  262040  262048  266669 

科目: 来源: 题型:

【题目】已知函数 .

1)当时,求曲线在点处的切线方程;

2时,求在区间上的最大值和最小值;

3)当时,若方程在区间上有唯一解,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点在正方体的面对角线上运动,则下列四个命题:

③平面平面

④三棱锥的体积不变.

其中正确的命题序号是______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当时,求曲线处的切线方程;

(2)当时,判断 上的单调性,并说明理由;

(3)当时,求证: ,都有

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为其右焦点, 是椭圆的左、右顶点,点满足.

①证明: 为定值;

②设是直线上的任一点,直线分别另交椭圆两点,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业生产甲、乙两种产品均需要两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )

原料限额

(吨)

3

2

10

(吨)

1

2

6

A. 10万元B. 12万元C. 13万元D. 14万元

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数满足:对于任意实数都有恒成立,且当时,

(Ⅰ)判定函数的单调性,并加以证明;

(Ⅱ)设,若函数有三个零点从小到大分别为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】”是“直线与直线平行”的( )

A. 充分而不必要条件B. 必要而充分不条件

C. 充要条件D. 既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱台中, 底面,平面平面的中点.

(1)证明:

(2)若,且,求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某投资人欲将5百万元资金投人甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入资金的关系式分别为,其中为常数且.设对乙种产品投入资金百万元.

(Ⅰ)当时,如何进行投资才能使得总收益最大;(总收益

(Ⅱ)银行为了吸储,考虑到投资人的收益,无论投资人资金如何分配,要使得总收益不低于0.45百万元,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)求函数fx)的单调递减区间;

2)设fx)的最小值是,最大值是3,求实数mn的值.

查看答案和解析>>

同步练习册答案