科目: 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;
(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设 是由组成的行列的数表(每个数恰好出现一次),且.
若存在, ,使得既是第行中的最大值,也是第列中的最小值,则称数表为一个“数表”为数表的一个“值”,
对任意给定的,所有“数表”构成的集合记作.
判断下列数表是否是“数表”.若是,写出它的一个“值”;
,
(Ⅱ)求证:若数表是“数表”,则的“值”是唯一的;
(Ⅲ)在中随机选取一个数表,记的“值”为,求的数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知无穷数列的前n项和为,记, ,…, 中奇数的个数为.
(Ⅰ)若= n,请写出数列的前5项;
(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;
(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合是集合 的一个含有个元素的子集.
(Ⅰ)当时,
设
(i)写出方程的解;
(ii)若方程至少有三组不同的解,写出的所有可能取值.
(Ⅱ)证明:对任意一个,存在正整数使得方程 至少有三组不同的解.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;
(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年空气质量逐步雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知按性别采用分层抽样法抽取容量为10的样本,则抽到男士的人数为5.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)能否在犯错概率不超过的前提下认为患心肺疾病与性别有关?说明你的理由.
下面的临界值表供参考:
参考公式:
,其中
查看答案和解析>>
科目: 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳组的人数 | 占本组的频率 |
第一组 | 120 | 0.6 | |
第二组 | 195 | ||
第三组 | 100 | 0.5 | |
第四组 | 0.4 | ||
第五组 | 30 | 0.3 | |
第六组 | 15 | 0.3 |
(1)补全频率分布直方图,并求,,的值;
(2)求年龄段人数的中位数和众数;
(3)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在岁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com