相关习题
 0  261878  261886  261892  261896  261902  261904  261908  261914  261916  261922  261928  261932  261934  261938  261944  261946  261952  261956  261958  261962  261964  261968  261970  261972  261973  261974  261976  261977  261978  261980  261982  261986  261988  261992  261994  261998  262004  262006  262012  262016  262018  262022  262028  262034  262036  262042  262046  262048  262054  262058  262064  262072  266669 

科目: 来源: 题型:

【题目】A(1)五人站一排,必须站右边,则不同的排法有多少种;

(2)晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目插入原节目单中,则不同的插法有多少种.

B.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把小球放入盒子里.

①小球全部放入盒子中有多少种不同的放法;

②恰有一个盒子没放球有多少种不同的放法;

③恰有两个盒子没放球有多少种不同的放法.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

(1)讨论函数的单调性,并写出相应的单调区间;

(2)已知,若对任意都成立,求的最大值;

(3)设,若存在,使得成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组: ,分别加以统计,得到如图所示的频率分布直方图.

(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);

(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;

(3)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有 的把握认为“生产能手与工人所在年龄组有关”?

生产能手

非生产能手

合计

25周岁以上组

25周岁以下组

合计

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】定义函数(其中为自变量,为常数).

(Ⅰ)若当时,函数的最小值为-1,求实数的值;

(Ⅱ)设全集,已知集合,若集合满足,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为圆的圆心,且圆轴所得弦长为4.

(1)求椭圆与圆的方程;

(2)若直线与曲线都只有一个公共点,记直线与圆的公共点为,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)当时,求函数的单调递增区间;

(2)对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司拟购买一块地皮建休闲公园,如图,从公园入口沿方向修建两条小路,休息亭与入口的距离为米(其中为正常数),过修建一条笔直的鹅卵石健身步行带,步行带交两条小路于处,已知

(1)设米,米,求关于的函数关系式及定义域;

(2)试确定的位置,使三条路围成的三角形地皮购价最低.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:

每名快递员完成一件货物投递可获得的劳务费情况如下:

甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.

(1)根据表中数据写出甲公司员工在这10天投递的快递件数的平均数和众数;

(2)为了解乙公司员工的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的概率;

(3)根据表中数据估算公司的每位员工在该月所得的劳务费.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线 ,过直线上任一点向抛物线引两条切线(切点为,且点轴上方).

(1)求证:直线过定点,并求出该定点;

(2)抛物线上是否存在点,使得

查看答案和解析>>

同步练习册答案