科目: 来源: 题型:
【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的须率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50-70分的频率是多少
(2)求这三个年级参赛学生的总人数是多少:
(3)求成绩在80-100分的学生人数是多少
查看答案和解析>>
科目: 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,
求这5人中经常使用、偶尔或不用共享单车的人数;
从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数,若存在,使得成立,则称为的不动点,已知函数
(1)当,时,求函数的不动点;
(2)若对任意实数,函数恒有不动点,求的取值范围;
(3)在(2)条件下,若图象上的两点的横坐标是函数的不动点,且的中点在直线上,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表
组号 | 分组 | 回答正确 的人数 | 回答正确的人数 占本组的频率 |
第1组 | [15,25) | 0.5 | |
第2组 | [25,35) | 18 | |
第3组 | [35,45) | 0.9 | |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为(),则出厂价相应地提高比例为,同时预计年销售量增加的比例为,已知年利润=(出厂价-投入成本)×年销售量.
(1)写出本年度预计的年利润与投入成本增加的比例的关系式;
(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比应在什么范围内?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项数列的前n项和为,对于任意的,都有.
(1)求,;
(2)求数列的通项公式;
(3)令问是否存在正数m,使得对一切正整数n都成立?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,
据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x满足函数关系
式.
(1)要使营运累计利润高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运利润的值最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com