相关习题
 0  261890  261898  261904  261908  261914  261916  261920  261926  261928  261934  261940  261944  261946  261950  261956  261958  261964  261968  261970  261974  261976  261980  261982  261984  261985  261986  261988  261989  261990  261992  261994  261998  262000  262004  262006  262010  262016  262018  262024  262028  262030  262034  262040  262046  262048  262054  262058  262060  262066  262070  262076  262084  266669 

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

【答案】(I)见解析; (Ⅱ)见解析.

【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.

详解:(I)由题意得,甲公司一名推销员的日工资 (单位:) 与销售件数的关系式为: .

乙公司一名推销员的日工资 (单位: ) 与销售件数的关系式为:

()记甲公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

记乙公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

120

128

144

160

0.2

0.3

0.4

0.1

∴仅从日均收入的角度考虑,我会选择去乙公司.

点睛:求解离散型随机变量的数学期望的一般步骤为:

第一步是判断取值,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

第二步是探求概率,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;

第三步是写分布列,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

第四步是求期望值,一般利用离散型随机变量的数学期望的定义求期望的值

型】解答
束】
19

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线.

(1)当时,求曲线在处的切线方程;

2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点轴的平行线交抛物线的准线于,直线交抛物线于点.

(Ⅰ)求抛物线的方程;

(Ⅱ)若三个点满足,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

)当时,求的单调区间和极值.

)若对于任意,都有成立,求的取值范围 ;

)若证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆 的离心率为,直线ly=2上的点和椭圆上的点的距离的最小值为1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 已知椭圆的上顶点为A,点BC上的不同于A的两点,且点BC关于原点对称,直线ABAC分别交直线l于点EF.记直线的斜率分别为

① 求证: 为定值;

② 求△CEF的面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段: ,,, ,得到如图所示的频率分布直方图.

(Ⅰ)求这80名群众年龄的中位数;

(Ⅱ)将频率视为概率,现用随机抽样方法从该社区群众中每次抽取1人,共抽取3次,记被抽取的3人中年龄在的人数为,若每次抽取的结果是相互独立的,求的分布列,及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数其中

1)讨论函数的单调性;

2)若函数有两个零点,

(i)的取值范围;

(ii)的两个零点分别为x1,x2,证明:x1x2>e2

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.

(1)试写出的表达式;

(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有的把握认为郑州市本年度空气重度污染与供暖有关?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

查看答案和解析>>

科目: 来源: 题型:

【题目】记函数的定义域为D. 如果存在实数使得对任意满

x恒成立,则称函数.

1)设函数,试判断是否为函数,并说明理由;

2)设函数,其中常数,证明: 函数;

3)若是定义在上的函数,且函数的图象关于直线m为常数)对称,试判断是否为周期函数?并证明你的结论.

查看答案和解析>>

同步练习册答案