科目: 来源: 题型:
【题目】已知数列{an}满足a1=,an+1=3an-1(n∈N*).
(1)若数列{bn}满足bn=an-,求证:{bn}是等比数列;
(2)求数列{an}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:
【题目】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列称为斐波那契数列. 并将数列中的各项除以4所得余数按原顺序构成的数列记为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知三棱锥的三条侧棱, , 两两垂直, 为等边三角形, 为内部一点,点在的延长线上,且.
(Ⅰ)证明: ;
(Ⅱ)证明: ;
(Ⅲ)若,求二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P—ABCD的底面是边长为a的棱形,PD⊥底面ABCD.
(1)证明:AC⊥平面PBD;
(2)若PD=AD,直线PB与平面ABCD所成的角为45°,四棱锥P—ABCD的体积为,求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他个人发出邀请,则这个人中至少有个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
根据表中数据,能否有%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:
查看答案和解析>>
科目: 来源: 题型:
【题目】在标有“甲”的袋中有个红球和个白球,这些球除颜色外完全相同.
(Ⅰ)若从袋中依次取出个球,求在第一次取到红球的条件下,后两次均取到白球的概率;
(Ⅱ)现从甲袋中取出个红球, 个白球,装入标有“乙”的空袋.若从甲袋中任取球,乙袋中任取球,记取出的红球的个数为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,函数(是自然对数的底数).
(Ⅰ)若,证明:曲线没有经过点的切线;
(Ⅱ)若函数在其定义域上不单调,求的取值范围;
(Ⅲ)是否存在正整数,当时,函数的图象在轴的上方,若存在,求的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com