相关习题
 0  261932  261940  261946  261950  261956  261958  261962  261968  261970  261976  261982  261986  261988  261992  261998  262000  262006  262010  262012  262016  262018  262022  262024  262026  262027  262028  262030  262031  262032  262034  262036  262040  262042  262046  262048  262052  262058  262060  262066  262070  262072  262076  262082  262088  262090  262096  262100  262102  262108  262112  262118  262126  266669 

科目: 来源: 题型:

【题目】为选拔选手参加“中国诗词大会”,某中学举行一次“诗词大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在 的数据).

(1)求样本容量和频率分布直方图中的值;

(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,设随机变量表示所抽取的2名学生中得分在内的学生人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】有以下四种变换方式:

向左平移个单位长度,再将每个点的横坐标缩短为原来的;

向右平移个单位长度,再将每个点的横坐标缩短为原来的;

每个点的横坐标缩短为原来的,向右平移个单位长度;

每个点的横坐标缩短为原来的,向左平移个单位长度;

其中能将的图像变换成函数的图像的是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】

如图,四边形ABCD为正方形,QA⊥平面ABCDPD∥QAQA=AB=PD

I)证明:PQ⊥平面DCQ

II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 (是自然对数的底数), .

(1)求曲线在点处的切线方程;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意.

查看答案和解析>>

科目: 来源: 题型:

【题目】图一是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1勾股树,重复图二的作法,得到图三为第2勾股树,以此类推,已知最大的正方形面积为1,则第勾股树所有正方形的个数与面积的和分别为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是函数的导函数的图象,给出下列命题:

①-2是函数的极值点;

②1是函数的极值点;

的图象在处切线的斜率小于零;

④函数在区间上单调递增.

则正确命题的序号是( )

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)解不等式:

(Ⅱ)当时,函数的图象与轴围成一个三角形,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)当时,证明:

(3)求证:对任意的,都有:(其中为自然对数的底数)。

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)

总计

喜爱

40

60

100

不喜爱

20

20

40

总计

60

80

140

(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)

(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.

附:临界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 有两个不同的零点.

(1)求的取值范围;

(2)设 的两个零点,证明: .

查看答案和解析>>

同步练习册答案