相关习题
 0  261950  261958  261964  261968  261974  261976  261980  261986  261988  261994  262000  262004  262006  262010  262016  262018  262024  262028  262030  262034  262036  262040  262042  262044  262045  262046  262048  262049  262050  262052  262054  262058  262060  262064  262066  262070  262076  262078  262084  262088  262090  262094  262100  262106  262108  262114  262118  262120  262126  262130  262136  262144  266669 

科目: 来源: 题型:

【题目】南康某服装厂拟在年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元满足.已知年生产该产品的固定投入为万元,每生产万件该产品需要再投入万元.厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

1)将年该产品的利润万元表示为年促销费用万元的函数;

2)该服装厂年的促销费用投入多少万元时,利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2lnx.

(1)求f(x)的单调区间;

(2)证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】函数在一个周期内的图象如图所示,A为图象的最高点,BC的图象与x轴的交点,且为等边三角形.将函数的图象上各点的横坐标变为原来的倍后,再向右平移个单位,得到函数的图象.

1)求函数的解析式;

2)若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据如下表:

(1)求

(2)能否有的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

附:

.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年2月25日第23届冬季奥运会在韩国平昌闭幕,中国以1金6银2铜的成绩结束本次冬奥会的征程.某校体育爱好者协会在高三年级某班进行了“本届冬奥会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),按分层抽样从被调查的学生中随机抽取了11人,具体的调查结果如下表:

某班

满意

不满意

男生

2

3

女生

4

2

(Ⅰ)若该班女生人数比男生人数多4人,求该班男生人数和女生人数

(Ⅱ)在该班全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;

(Ⅲ)若从该班调查对象中随机选取2人进行追踪调查,记选中的2人中对“本届冬奥会中国队表现”满意的人数为求随机变量的分布列及其数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线过点且倾斜角为.

(1)求曲线的直角坐标方程和直线的参数方程;

(2)设直线与曲线交于 两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型工厂有6台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为.已知1名工人每月只有维修2台机器的能力(若有2台机器同时出现故障,工厂只有1名维修工人,则该工人只能逐台维修,对工厂的正常运行没有任何影响),每台机器不出现故障或出现故障时能及时得到维修,就能使该厂获得10万元的利润,否则将亏损2万元.该工厂每月需支付给每名维修工人1万元的工资.

(1)若每台机器在当月不出现故障或出现故障时,有工人进行维修(例如:3台大型机器出现故障,则至少需要2名维修工人),则称工厂能正常运行.若该厂只有1名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有2名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求函数上的最小值;

2)若对任意的恒成立.试求实数a的取值范围;

3)若时,求函数上的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工能够健康工作,在全校范围内倡导“每天一万步”健康走活动,学校界定一人一天走路不足4千步为“健步常人”,不少于16千步为“健步超人”,其他人为“健步达人”,学校随机抽取抽查人36名教职工,其每天的走步情况统计如下:

现对抽查的36人采用分层抽样的方式选出6人,从选出的6人中随机抽取2人进行调查.

(1)求这两人健步走状况一致的概率;

(2)求“健步超人”人数的分布列与数学期望.

查看答案和解析>>

同步练习册答案