科目: 来源: 题型:
【题目】已知等差数列的公差d>0,则下列四个命题:
①数列是递增数列; ②数列是递增数列;
③数列是递增数列; ④数列是递增数列.
其中正确命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数, R.
(1)证明:当时,函数是减函数;
(2)根据的不同取值,讨论函数的奇偶性,并说明理由;
(3)当,且时,证明:对任意,存在唯一的R,使得,且.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生概率分别为.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.
(1)求乙车间每天机器发生故障的台数的分布列;
(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某校有歌唱和舞蹈两个兴趣小组,其中歌唱组有 4 名男生,1 名女生,舞蹈组有2 名男生,2 名女生,学校计划从两兴趣小组中各选2名同学参加演出.
(1)求选出的4名同学中至多有2名女生的选派方法数;
(2)记X为选出的4名同学中女生的人数,求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于,),点在线段上,且满足.已知,,设.
(1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.当为何值时,工艺礼品达到最佳观赏效果;
(2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.当为何值时,取得最大值,并求该最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点.
(1)若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端
时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;
(2)设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲
乙之间的距离表示为θ的函数,并求甲乙之间的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com