相关习题
 0  261960  261968  261974  261978  261984  261986  261990  261996  261998  262004  262010  262014  262016  262020  262026  262028  262034  262038  262040  262044  262046  262050  262052  262054  262055  262056  262058  262059  262060  262062  262064  262068  262070  262074  262076  262080  262086  262088  262094  262098  262100  262104  262110  262116  262118  262124  262128  262130  262136  262140  262146  262154  266669 

科目: 来源: 题型:

【题目】已知函数fx)=sin2xcos2x2sinxcosxxR.

1)求fx)的单调递增区间;

2)求函数fx)在区间[]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.

方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.

方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.

(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;

(2)若某顾客恰好获得1次抽奖机会.

①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;

②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,平面平面,,

分别为棱的中点.

(1)求证:

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数若满足: ,且,则称函数为“指向的完美对称函数”.已知是“1指向2的完美对称函数”,且当时, .若函数在区间上恰有5个零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面四边形ABCD中,ACBD交于点P,若3BPBDABADBC,则_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】αβ是两个不重合的平面,在下列条件中,可判断平面αβ平行的是(  )

A. mn是平面内两条直线,且

B. 内不共线的三点到的距离相等

C. 都垂直于平面

D. mn是两条异面直线,,且

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}的前n项和为Sn,对任意nN*总有2Snan2+n,且anan+1.若对任意nN*,θR,不等式λn+2)恒成立,求实数λ的最小值( )

A.1B.2C.1D.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是(  )

A. 有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱

B. 四棱锥的四个侧面都可以是直角三角形

C. 有两个平面互相平行,其余各面都是梯形的多面体是棱台

D. 棱台的各侧棱延长后不一定交于一点

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的方程是: ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)设过原点的直线与曲线交于 两点,且,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

同步练习册答案