相关习题
 0  262003  262011  262017  262021  262027  262029  262033  262039  262041  262047  262053  262057  262059  262063  262069  262071  262077  262081  262083  262087  262089  262093  262095  262097  262098  262099  262101  262102  262103  262105  262107  262111  262113  262117  262119  262123  262129  262131  262137  262141  262143  262147  262153  262159  262161  262167  262171  262173  262179  262183  262189  262197  266669 

科目: 来源: 题型:

【题目】已知中,三个内角所对的边分别是

1)证明:

2)在①,②,③这三个条件中任选一个补充在下面问题中,并解答

________,求的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCDDAB60°且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD

1GAD边的中点,求证:BG平面PAD

2求证:ADPB

查看答案和解析>>

科目: 来源: 题型:

【题目】中,,以的中线为折痕,将沿折起,如图所示,构成二面角,在面内作,且

(1)求证:平面

(2)如果二面角的大小为,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目: 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.5

根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数:

模型甲: ,模型乙: .

1为了评价两种模型的拟合效果,完成以下任务:

完成下表计算结果精确到0.1)(备注: 称为相应于点的残差);

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

2.4

2

1.8

1.4

残差

0

0

0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

2这家企业在城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8.若按1中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.利润=收入-成本

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为,直线与抛物线相交于不同的 两点.

(1)求抛物线的标准方程;

(2)如果直线过抛物线的焦点,求的值;

(3)如果,直线是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱 中,DA1B1的中点,ABBC2,,则异面直线BDAC所成的角为(  )

A. 30°B. 45°C. 60°D. 90°

查看答案和解析>>

科目: 来源: 题型:

【题目】()(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于65则中二等奖,等于4则中三等奖,其余结果为不中奖.

(1)求中二等奖的概率.

(2)求不中奖的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市为了解端午节期间粽子的销售量,对其所在销售范围内的1000名消费者在端午节期间的粽子购买量(单位:g)进行了问卷调查,得到如图所示的频率分布直方图.

(Ⅰ)求频率分布直方图中a的值;

(Ⅱ)求这1000名消费者的棕子购买量在600g1400g的人数;

(Ⅲ)求这1000名消费者的人均粽子购买量(频率分布直方图中同一组的数据用该组区间的中点值作代表).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案