科目: 来源: 题型:
【题目】如图椭圆的离心率为, 其左顶点在圆上.
(1)求椭圆的方程;
(2)直线与椭圆的另一个交点为,与圆的另一个交点为.是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2022年第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学从全校学生中随机抽取了120名学生,对是否收看第23届平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
(1)根据上表数据,能否有的把握认为,是否收看开幕式与性别有关?
(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率.
附: ,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A. 若命题都是真命题,则命题“”为真命题
B. 命题“”的否定是“,”
C. 命题:“若,则或”的否命题为“若,则或”
D. “”是“”的必要不充分条件
查看答案和解析>>
科目: 来源: 题型:
【题目】某盒子内装有三种颜色的玻璃球,一位同学每次从中随机拿出一个玻璃球,观察颜色后再放回,重复了50次,得到的信息如下:观察到红色26次、蓝色13次.如果从这个盒子内任意取一个玻璃球,估计:
(1)这个球既不是红色也不是蓝色的概率;
(2)这个球是红色或者是蓝色的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】返乡创业的大学生一直是人们比较关注的对象,他们从大学毕业,没有选择经济发达的大城市,而是回到自己的家乡,为养育自己的家乡贡献自己的力量,在享有“国际花园城市”称号的温江幸福田园,就有一个由大学毕业生创办的农家院“小时代”,其独特的装修风格和经营模式,引来无数人的关注,带来红红火火的现状,给青年大学生们就业创业上很多新的启示.在接受采访中,该老板谈起以下情况:初期投入为72万元,经营后每年的总收入为50万元,第n年需要付出房屋维护和工人工资等费用是首项为12,公差为4的等差数列(单位:万元).
(1)求;
(2)该农家乐第几年开始盈利?能盈利几年?(即总收入减去成本及所有费用之差为正值)
(3)该农家乐经营多少年,其年平均获利最大?年平均获利的最大值是多少?(年平均获利前年总获利)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:
年份年 | 1 | 2 | 3 | 4 | 5 |
维护费万元 |
Ⅰ求y关于t的线性回归方程;
Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
参考公式:,
查看答案和解析>>
科目: 来源: 题型:
【题目】下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形内角和是归纳出所有三角形的内角和都是
③由,满足,推出是奇函数;
④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.
A. ①②④B. ①③④C. ②④D. ①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com